• Login
    View Item 
    •   Home
    • University of Alaska Southeast
    • School of Arts and Sciences
    • Faculty and Staff
    • Amundson, Jason M.
    • View Item
    •   Home
    • University of Alaska Southeast
    • School of Arts and Sciences
    • Faculty and Staff
    • Amundson, Jason M.
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brunt et al 2016 Cryosphere - ...
    Size:
    8.764Mb
    Format:
    PDF
    Description:
    article
    Download
    Author
    Brunt, Kelly M.
    Neumann, Thomas A.
    Amundson, Jason M.
    Kavanaugh, Jeffrey L.
    Moussavi, Mahsa S.
    Walsh, Kaitlin M.
    Cook, William B.
    Markus, Thorsten
    Keyword
    satellite determination of surface elevation
    ICESat-2
    MABEL
    photon-counting laser altimetry
    ATLAS
    Alaska
    NASA
    glacier studies
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11341
    Abstract
    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS) which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1) of an ice-sheet interior over 50 to 150m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.
    Date
    2016-08-10
    Source
    The Cryosphere
    Publisher
    Copernicus Publications on behalf of the European Geosciences Union
    Type
    Article
    Peer-Reviewed
    Yes
    Citation
    Brunt, K.M., T.A. Neumann, J.M. Amundson, J.L. Kavanaugh, M.S. Moussavi, K.M. Walsh, W.B. Cook, and T. Markus, 2016. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development. Cryosphere, 10, 1707-1719, https://doi.org/10.5194/tc-10-1707-2016.
    Collections
    Amundson, Jason M.

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2021 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.