• Alaskan king crab: Bering Sea distributions and a parasitic castrator

      Zacher, Leah Sloan; Hardy, Sarah; Eckert, Ginny; Kruse, Gordon; Horstmann, Lara; Morado, Frank (2018-05)
      King crab play an integral role in both marine ecosystems and fisheries; they influence benthic community structure through predation, help regulate trophic cascades, and are an important food source for large fishes, marine mammals, and humans. To sustainably manage king crab fisheries in a changing climate, it is essential to have a thorough understanding of king crab biology and behavior, as well as knowledge on how they utilize and interact with other components of the ecosystem. I investigated factors important to king crab sustainability and management, including distribution patterns and a parasitic castrator. Rhizocephalan barnacles in the genus Briarosaccus parasitize and castrate king crab hosts, thereby preventing host reproduction and potentially altering host abundance. In Alaska, prevalence is generally low (< 1% infection rate), yet higher prevalence has occurred in localized bays and fjords. I studied the larval biology of Briarosaccus regalis infecting Paralithodes camtschaticus (red king crab) to better understand how environmental factors in Alaska may influence prevalence. Maximum larval B. regalis survival occurred from 4 to 12°C and at salinities between 25 and 34. Given these parameters, current conditions in the Gulf of Alaska and Bering Sea appear favorable for high survival of B. regalis larvae. Rhizocephalans not only castrate their hosts, but they cause changes in host morphology, physiology, and behavior. I used an untargeted metabolomics (liquid chromatography mass spectrometry) approach to compare the metabolite profiles (e.g., signaling molecules, hormones) of P. camtschaticus and Lithodes aequispinus (golden king crab) with and without rhizocephalan infections. Hundreds of putative metabolites were identified, yet few differed with crab sex and no metabolites could differentiate infected from healthy crab (regardless of crab sex). There were large variations in the crab metabolome with collection year and location, perhaps associated with environmental variability, which likely masked differences between sex and infection status. Summer distributions of Bristol Bay red king crab are well documented from surveys, but their distribution patterns at other times of year are poorly understood. Daily fishing logs, kept by vessel skippers in the red king crab fleet since 2005, contain detailed information on the spatial distribution of fishery effort and catch of legal sized male crab during the autumn crab fishery. However, data contained in these hand-written logbooks have not been readily accessible. I digitized daily fishing logs from 2005 to 2016 and used spatial information to infer geographic distributions. These distributions were compared across temperature regimes. In warm years (2005, 2014 - 2016) crab aggregated in the center of Bristol Bay, while in cold years (2007 - 2013) they were closer to the Alaska Peninsula. There are regions in Bristol Bay that are closed to the bottom trawl fisheries to protect red king crab; these results have management implications because they show the extent to which crab use these closure areas in the autumn, shortly before the winter trawl fisheries begin. As temperatures continue to shift in the Bering Sea, it will be important to continue monitoring crab distributions outside the summer survey period. Overall, these studies should help guide the placement of trawl closure areas, predict crab movement with temperature changes, understand the larval biology of B. regalis and what that could mean with climate change, and lead to a better understanding of the physiology of Briarosaccus infection.
    • Biogeochemical tracers of change in Pacific walruses past and present

      Clark, Casey; Horstmann, Lara; Misarti, Nicole; Konar, Brenda; Severin, Ken; Lemons, Patrick (2019-05)
      Reduced sea ice and projected food web shifts associated with warming of the Arctic have raised concerns about the future of Arctic species. Pacific walruses (Odobenus rosmarus divergens) use sea ice as a platform for molting, giving birth, and resting between foraging bouts. Exactly how sea ice loss will affect walruses is difficult to predict, due to a lack of information about regional ecosystems and their responses to climate change. The objectives of the research in this dissertation were to 1) examine how walrus diet changed in response to shifting sea ice conditions over the last 4,000 years, with the goal of generating predictions about how current and future ice loss may affect the walrus population; 2) make it easier to directly compare the results of retrospective and contemporary stable isotope studies of walruses; and 3) generate new tools to assist wildlife managers in monitoring the walrus population in an uncertain future. Stable carbon and nitrogen isotope ratios of walrus bone collagen indicated that diet was similar during previous intervals of high and low sea ice; however, diet variability among individual walruses was greater when sea ice cover was low, suggesting decreased abundance of preferred mollusk prey. Modern walrus diet was different from both previous high and low ice intervals, meaning that food webs in the Arctic are still in a state of flux, or that recent changes are novel within the last 4,000 years. Tissue-specific stable isotope discrimination factors were generated for walrus muscle, liver, skin, and bone collagen to improve comparisons between retrospective and contemporary studies of walrus diet. Additionally, lipid normalization models were parameterized for walrus skin and muscle, thereby making future walrus stable isotope research more feasible by reducing analytical costs and allowing the use of non-lethal sample collection. Finally, a novel technique for estimating the age at onset of reproductive maturity using concentrations of zinc and lead in the teeth of female walruses was established. This new approach has the potential to become a powerful tool for monitoring the walrus population and may be applicable to other species. Use of this technique on archived specimens may make it possible to examine changes in wildlife population dynamics across thousands of years.
    • Defining genetic population structure and historical connectivity of snow crab (Chionoecetes opilio)

      Albrecht, Gregory T.; Hardy, Sarah M.; Lopez, J. Andres; Hundertmark, Kris J. (2011-08)
      The snow crab (Chionoecetes opilio) is a valuable commercial resource within the Bering Sea, as well as other areas in the North Pacific and Atlantic Oceans. Large populations are known to exist within the Chukchi and Beaufort Seas, including recently discovered commercial sized individuals (Beaufort). However, genetic connectivity throughout these regions has not been examined until now. Based on seven polymorphic microsatellite loci, relatively low population genetic structuring occurs throughout the Alaskan region (Gst = 0.001). This homogeneity is likely due to long-distance larval dispersal, adult migrations, and a possible recent population expansion following the last glacial maximum. Furthermore, meta-population analysis was conducted for Alaskan and Northwest Atlantic stocks. Although significant genetic divergence characterizes the West Greenland stock in relation to all other populations, low divergence (Gst = 0.005) was found between Atlantic Canada crabs and those from the Alaska region. Larval dispersal between regions is highly unlikely due to the transit distance. Therefore, low divergence is likely the result of a recent population expansion into the Northwest Atlantic <5000 years ago.
    • Determining the effects of Asian pink and chum salmon on Western Alaska chum salmon growth

      Minicucci, Tessa J.; McPhee, Megan V.; Yasumiishi, Ellen M.; Adkison, Milo; Beckman, Brian (2018-08)
      Increased hatchery production and favorable ocean conditions have resulted in historically high abundances of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean. Despite these conditions, chum salmon (O. keta) have experienced reductions in growth, body size, and increases in age at maturity throughout their range. In western Alaska, dramatic declines in the abundance of chum salmon between 1997-2001 resulted in numerous fishery and economic disasters among commercial and subsistence users. Chapter 1 reviews existing data on salmon diet and ocean distribution to address the potential for competition between western Alaska chum salmon and Asian pink (O. gorbuscha) and chum salmon in the Bering Sea. Western Alaska chum salmon reside in the Bering Sea during their summer foraging months where they overlap with abundant populations of Russian pink salmon (primarily wild origin) and Japanese chum salmon (primarily hatchery origin). Chum and pink salmon occupy a similar feeding niche, and during years of high pink salmon abundance chum salmon have been observed to alter their ocean distribution and rely more heavily on gelatinous zooplankton species as a primary food source. This spatial and diet overlap suggests that inter- and intra-specific competition might contribute to reduced growth and increased age at maturity of western Alaska chum salmon. Chapter 2 uses retrospective scale analysis coupled with linear mixed-effects modeling to investigate the potential for such competition between Asian pink and chum salmon abundance and the growth of chum salmon that rear in the Bering Sea. Chum salmon scale samples were collected through in-river fisheries on the Kuskokwim River during 1973-2014 and from incidental catches of chum salmon in the Bering Sea Aleutian Island walleye pollock (Gadus chalcogrammus) fishery during 2001-2016. Linear mixed-effects models demonstrated a strong negative relationship between Bethel chum salmon growth and the abundance of Japanese hatchery chum salmon. Chum salmon intercepted in the Bering Sea did not exhibit increased growth during 2012-2014 despite reductions in Japanese hatchery releases of chum salmon in 2011 as a result of the Tōhoku Earthquake and tsunami. We did not observe a relationship between Bethel chum salmon growth and the abundance of wild Russian pink salmon. Understanding how salmon populations interact while at sea will assist fishery managers in conserving threatened salmon stocks, particularly as Pacific Rim nations consider increasing production of hatchery salmon.
    • Diversity and community structure of eukaryotic phototrophs in the Bering and Chukchi seas

      Lekanoff, Rachel M.; Collins, R. Eric; McDonnell, Andrew M.P.; Danielson, Seth L. (2020-05)
      The phytoplankton of the Bering and Chukchi seas support highly productive ecosystems characterized by tight benthic-pelagic coupling. In this study, we focus on the northern Bering and Chukchi seas, considering them as one ecosystem. This community has historically been dominated by diatoms; however, climate change and accompanying warming ocean temperatures may alter primary producer communities. Using metabarcoding, we present the first synoptic, high-throughput molecular phylogenetic investigation of phytoplankton diversity in the Bering and Chukchi seas based on hundreds of samples collected from June to September in 2017. We identify the major and minor taxonomic groups of diatoms and picophytoplankton, relative abundances of genera, exact sequence variants (201 for diatoms and 227 for picophytoplankton), and describe their biogeography. These phylogenetic insights and environmental data are used to characterize preferred temperature ranges, offering insight into which specific phytoplankton (Chaetoceros, Pseudo−nitzschia, Micromonas, Phaeocystis) may be most affected as the region warms. Finally, we investigated the likelihood of using shipboard CTD data alone as predictive variables for which members of phytoplankton communities may be present. We found that the suite of environmental data collected from a shipboard CTD is a poor predictor of community composition, explaining only 12.6% of variability within diatom genera and 14.2% variability within picophytoplankton genera. Clustering these communities by similarity of samples did improve predictability (43.6% for diatoms and 32.5% for picophytoplankton). However, our analyses succeeded in identifying temperature as a key driver for certain taxa found commonly throughout the region, offering a key insight into which common phytoplankton community members may be affected first as the Alaskan Arctic continues to warm.
    • Estimability of time-varying natural mortality in groundfishes: covariates and hierarchical models

      Ganz, Philip D.; Quinn, Terrance J. II; Hulson, Peter-John F.; Kruse, Gordon H. (2017-08)
      Natural mortality, M, has historically been a difficult parameter to estimate in conjunction with other stock assessment parameters. Time-varying M, while likely to be experienced by a population, is a particularly difficult process to estimate with the data and methods currently available to most stock assessments. Although auxiliary information in the form of a covariate to M has been shown to improve model fit for some stocks, such data are rarely available. Meanwhile, hierarchical models continue to be utilized in capturing processes that vary in time and space. I tested both the covariate and hierarchical methods in their ability to estimate time-varying M. I attempted to fit hierarchical models by two different methods: penalized likelihood and the integrated likelihood approach associated with mixed effects models. Mixed effects models performed poorly in comparison to penalized likelihood. Including a covariate to natural mortality aided the estimability of time-varying M, regardless of the observation error associated with the covariate. Estimating a constant value of M resulted in biased estimates when M was time-varying in the simulated population. I showed that the Akaike information criterion (AIC) is a useful metric for comparing models although it does not necessarily align with the accuracy of estimates that are of most interest to managers, such as terminal year spawning stock biomass. In addition to showing empirically that incorporating a covariate is a robust approach to estimating time-varying M, I conclude that this approach is also advantageous to stock assessment on theoretical grounds, as it is more amenable than hierarchical models to making predictions.
    • Examination of saffron cod (Eleginus gracilis) population genetic structure

      Smé, Noël A.; Gharrett, Anthony; Mueter, Franz; Heifetz, Jonathan (2019-05)
      The Saffron Cod (Eleginus gracilis) is an abundant forage fish that inhabits the coastlines of the north Pacific and Arctic oceans. We examined Saffron Cod population genetic structure to provide a reference baseline in anticipation of human and climate-change alterations of the Arctic environment. Nine microsatellites were designed to describe the genetic compositions of and variation among 40 collections of Saffron Cod from four regions (northwestern Alaska, Gulf of Alaska, Sea of Okhotsk, and Gulf of Anadyr). The northwestern Alaska collections (Bering Sea, Norton Sound, and Chukchi Sea) exhibited little genetic divergence. The Gulf of Anadyr collection differed from other regions but was most similar to those of the northwestern Alaska region. The two collections within the Sea of Okhotsk (Sakhalin Island and Hokkaido Island) differed genetically, but not to the extent they did from other regions. The collections from the Gulf of Alaska (Kodiak Island and Prince William Sound) comprised a lineage that was distinct from all of the other collections, including the geographically adjacent northwestern Alaska collections. The absence of genetic structure among northwestern Alaska collections probably reflects their recent expansion into previously unavailable habitat that became available after the Last Glacial Maximum (~16,000 years ago). The divergence of the Gulf of Alaska lineage may have resulted from recurrent episodes of isolation from previous glaciations.
    • Feeding ecology of larval and juvenile walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus) in the Southeastern Bering Sea

      Strasburger, Wesley Wayne; Hillgruber, Nicola; Pinchuk, Alexei; Mueter, Franz (2012-08)
      Poor recruitment success during warm years (e.g., 2001-2005) was hypothesized to lead to reduced gadid recruitment in the southeastern Bering Sea. These groundfishes are of particular importance, both commercially and ecologically in the southeastern Bering Sea. The spatial and temporal overlap of early life stages of walleye pollock and Pacific cod may explain their strongly correlated recruitment trends in the southeastern Bering Sea. The goal of this study was to compare feeding patterns of larval and juvenile walleye pollock (Theragra chalcogramma) and Pacific cod (Gadus macrocephalus) in the southeastern Bering Sea, and to assess the possibility of prey resource competition. Larvae and juveniles from both species collected between May and September 2008, an exceptionally cold year, were used to analyze stomach contents. Fish body size was most consistently related to diet composition within species, however, spatial and depth factors also had an influence. Feeding success and diet composition of these two gadid species were consistently different throughout the spring, summer, and especially fall seasons. Pacific cod larvae and juveniles consistently consumed larger prey items in every season and progressively fewer prey items, especially in the fall. This data suggests that competition for prey resources was unlikely during cold 2008.
    • Fishing for pollock in a sea of change: a history and analysis of the Bering Sea pollock fishery

      Strong, James; Criddle, Keith R.; Adkison, Milo D.; Kruse, Gordon H. (2011-08)
      The development and evolution of the eastern Bering Sea fishery for walleye pollock (Theragra chalcogramma) is retraced, its current economic and institutional structure is modeled, and the resiliency of that structure to substantive changes in pollock biomass and fuel costs is explored. Small variations in exvessel prices, total allowable catches, or allocation of catches between seasons and among industry sectors can lead to large changes to first wholesale revenues. Similarly, changes in fuel prices, changes in technology, changes in regulation, and changes in the spatial distribution of catches can lead to changes in harvesting or processing costs. Together, these changes affect the relative profitability of the inshore and offshore sectors, which can, in turn, affect the benefits that accrue to communities, the evolution of regulation, and create pressure to reallocate sector shares. The model indicates that first wholesale revenues are maximized when pollock harvests are maximized. However, legal barriers to the transfer of allocations between sectors can lead to under-harvests when product prices are low, fuel costs are high, or when the most productive fishing grounds are in the northwest regions of the eastern Bering Sea Exclusive Economic Zone.
    • Pacific sleeper sharks in the Northeast Pacific Ocean: relative abundance, plausible incidental exploitation rates, trophic ecology, and habitat use

      Courtney, Dean Louis; Adkison, Milo D.; Foy, Robert; Sigler, Mike; Criddle, Keith R.; DiNardo, Gerard (2017-12)
      Pacific sleeper shark relative abundance indices in the eastern Bering Sea and Gulf of Alaska were developed from sablefish longline surveys and the sustainability of a plausible range in Pacific sleeper shark incidental exploitation rates in the Gulf of Alaska was evaluated with a risk analysis using Monte Carlo simulation for use in fisheries management. A significant increase in Pacific sleeper shark relative abundance was identified in the Gulf of Alaska during the years 1989-2003. The aggregate risk of ending in an overfished condition in the Gulf of Alaska increased from 0% under a low exploitation rate scenario to 59% under a high exploitation rate scenario. Baseline information about Pacific sleeper shark trophic ecology and habitat utilization in the eastern Bering Sea and Gulf of Alaska was developed for use in ecosystem-based fishery management. Analysis of stable isotope ratios of nitrogen (δ¹⁵N) and lipid normalized carbon (δ¹³C′) identified significant geographic and ontogenetic variability in the trophic ecology of Pacific sleeper sharks in the eastern Bering Sea and Gulf of Alaska and revealed wider variability in the feeding ecology of Pacific sleeper sharks than previously obtained from diet data based on stomach contents alone. Time series analysis of Pacific sleeper shark electronic tag data from the Gulf of Alaska identified a simple autoregressive relationship governing short-term movements (hours) throughout the time series which included substantial variation in longer time period movement patterns (months) and demonstrated that statistical inference about habitat utilization could be drawn from simultaneous analysis of an entire time series depth profile (six months of data) stored on an electronic archival tag.
    • Quikscat measurements of the wind field over the Bering and Chukchi Seas

      Mull, Jeremy M.; Johnson, Mark; Weingartner, Tom; Simmons, Harper (2008-12)
      The purpose of this study is to investigate the dynamic wind field and resulting ocean circulation patterns in the Bering and Chukchi Seas. This region forms an important link in global ocean circulation as Bering Strait is a major conduit for water flowing into the Arctic Ocean. The Arctic has been identified as an area sensitive to climate change; thus it is vital to understand how water and energy flow through this region. We first quantify the differences between the winds measured in this region by the Quik Scatterometer (QuikSCAT) and those modeled by the National Centers for Environmental Prediction (NCEP). Although the data sets are well correlated, we find significant discrepancies between these data sets and use linear regressions to correct the NCEP data. The magnitudes of the NCEP wind components are greater than the magnitudes of the QuikSCAT wind components. This creates directional differences between the two data sets at low wind speeds and NCEP speeds that are greater than QuikSCAT speeds at high wind speeds. We next challenge the assumption that the wind field is spatially uniform over the Bering and Chukchi shelves. We produce mean monthly maps of the wind field, surface Ekman transport, and wind variance based upon the 12-hourly QuikSCAT data from July 1999 – May 2007. These maps reveal that the winds are spatially and temporally dynamic in this region. There are several areas and times in which surface Ekman transport is onshore or offshore near the coasts and may engender coastal downwelling and upwelling, respectively. There are also several instances when surface Ekman convergence and divergence may lead to Ekman pumping and suction. We use the entire NCEP record (January 1948 – May 2007) to examine patterns of surface Ekman transport across the shelf break. There was a significant increase in the amount of onshelf surface Ekman transport that coincided with the regime shift that occurred in the Bering Sea in the mid-1970s. We attempt to correlate the time series of surface Ekman cross-shelf transport with several climate indices but find only very weak correlations. The annual surface Ekman freshwater fluxes across the shelf break are iii calculated and found to be very small compared to the total annual freshwater fluxes calculated by Aagaard et al. (2006) and Kinney et al. (2008). To resolve the dominant modes of wind variability we compute hourly, monthly, and annual Complex Empirical Orthogonal Functions (CEOFs) with the QuikSCAT and NCEP data sets. The first modes in each analysis account for more than 60% of the variance. Different aspects of the mode amplitude time series are cross-correlated with climate and indices to produce small but significant correlation coefficients. Finally we calculate Ekman pumping and suction at four locations in the Bering Sea during the spring and summer months of seven years (2000 – 2006). We identify regions and times when Ekman pumping and suction were particularly strong, and perform several runs of a one-dimensional Price-Weller-Pinkel (PWP) vertical mixing model with the QuikSCAT winds, the QuikSCAT winds and a wind-stress-curl term, and the NCEP winds. The results suggest that Ekman suction might facilitate subsequent vertical mixing while Ekman pumping might inhibit subsequent vertical mixing when the winds are generally weak and wind-stress-curl is moderate or strong. The temporal resolution of the QuikSCAT data set is too low to resolve inertial motions at high latitudes. The NCEP data set has higher temporal resolution and is adequate for running the model within this region. We propose interpolating the hourly NWS data collected at St. Paul Island (station PASN) to the QuikSCAT grid using the complex amplitudes and phases from the complex cross-correlations between the two data sets to produce a data set of high temporal and spatial resolution. This would enable researchers to accurately resolve inertial motions and compute wind-stress-curl.
    • Reproductive indices of male snow crab, Chionoecetes opilio, from the Eastern Bering Sea

      Zaleski, Marilyn Fox; Tamone, Sherry L.; Kruse, Gordon; Eckert, Ginny (2012-08)
      The reproductive success of male snow crab (Chionoecetes opilio) is complicated by two different life history stages; male C. opilio undergo a terminal molt prior to adulthood which is marked by an allometric change in chela size. While adolescent males can produce spermatophores, terminally molted males are most successful in mating and reproduction. Molting and mating are hormonally linked, with molting regulated primarily by ecdysteroids and mating regulated by the putative reproductive hormone methyl farnesoate (MF). Methyl farnesoate is structurally related to the insect juvenile III hormone and, in addition to reproduction, may have a role as a juvenilizing hormone in crustaceans. The purpose of this study was to determine how molting affects the reproductive biology of snow crab by comparing the gonadosomatic index(GSI) and concentrations of circulating MF in adolescent and adult males. I used shell condition as a rough estimate of time post molt to compare GSI and MF between new-shell males, those that had molted within one year, and old-shell males, those that had not molted for at least 1 year. I measured GSI as the ratio of gonad weight to whole crab weight and used GSI as a proxy for reproductive fitness; I quantified circulating MF using high performance liquid chromatography. New-shell adolescent and adult males had significantly lower GSI than old-shell males; thus molting compromises the reproductive physiology of male C. opilio. New-shell adolescent males had significantly higher MF levels than old-shell adolescent males, and MF levels remained low after the terminal molt, supporting a juvenilizing role for MF in C. opilio.
    • Reproductive potential of female eastern Bering Sea tanner crab

      Knutson, Michael R.; Eckert, Ginny L.; Daly, Benjamin; Mueter, Franz; Webb, Joel (2020-05)
      Changes in abundance and sex ratio can contribute to variation in the reproductive potential of a population. The commercially important Bering Sea Tanner crab (Chionoecetes bairdi) are distributed throughout the north Pacific Ocean and display cyclical population dynamics. The goal of this study was to examine how fishing pressures and population dynamics affected the reproductive potential of Bering Sea Tanner crab to better inform sustainable fishery management. I quantified female stored sperm levels and fecundity for both primiparous (in their first reproductive cycle) and multiparous (in their second or later reproductive cycle) crab to examine spatial and temporal variation in reproductive potential. Multiparous female crab had higher spermathecal load than primiparous ones, but spermathecal load varied widely across female size. Higher sperm cell counts were associated with visual indication of fresh ejaculate for primiparous crab but not for multiparous crab. Sperm cell counts increased with increasing spermathecal load for both primiparous and multiparous crab, although the slope of the regression line varied for the two categories. Female fecundity was highest in crab in their second year after the terminal molt to maturity and was lower in the first year and in the third and subsequent years. Female fecundity (size-corrected) did not differ among management areas. Measures of mature female sperm storage and quantification of reproductive stage can provide fishery managers with an early warning of reproductive failures.