• Ecological interactions among important groundfishes in the Gulf of Alaska

      Barnes, Cheryl L.; Beaudrea, Anne H.; Dorn, Martin W.; Holsman, Kirstin K.; Hunsicker, Mary E.; Mueter, Franz J. (2019-12)
      Complex ecological interactions such as predation and competition play an important role in shaping the structure and function of marine communities. In fact, these processes can have greater impacts than those related to fishing. We assessed ecological interactions among economically important fishes in the Gulf of Alaska - a large marine ecosystem that has recently undergone considerable shifts in community composition. Specifically, we developed an index of predation for Walleye Pollock (Gadus chalcogrammus) to examine spatiotemporal changes in consumption, quantify portfolio effects, and better understand diversity-stability relationships within the demersal food web. We also evaluated the potential for competition between two important pollock predators, Arrowtooth Flounder (Atheresthes stomias) and Pacific Halibut (Hippoglossus stenolepis). We found highly variable predation intensity on Gulf of Alaska pollock. The combination of a single dominant predator and synchronous consumption dynamics indicated strong top-down control in the region. Spatial heterogeneity, however, may offset trophic instability at the basin scale. Assessments of resource partitioning provided little indication for competition between Arrowtooth Flounder and Pacific Halibut of similar lengths. Morphological differences between the two flatfish predators prompted an exploration into whether our conclusions about resource partitioning were dependent upon the size metric used. From this study, we found a relatively early onset of piscivory for Arrowtooth Flounder. Relationships between predator size and prey size also suggested gape limitation among Pacific Halibut sampled. Trophic niche separation was more pronounced for fishes with larger gapes, indicating greater potential for competition among smaller Arrowtooth Flounder and Pacific Halibut in Southeast Alaska. Reexamining basin-scale relationships between spatial and dietary overlap according to gape size would further elucidate the effects an increasing Arrowtooth Flounder population has had on changes in Pacific Halibut size-at-age. Results from this dissertation improve our understanding about the impacts of complex ecological interactions on population and community dynamics, and how those interactions may change in time, space, and under different environmental conditions.
    • Impacts of a top predator (Esox lucius) on salmonids in Southcentral Alaska: genetics, connectivity, and vulnerability

      Jalbert, Chase S.; Falke, Jeffrey; Westley, Peter; López, J. Andrés; Dunker, Kristine (2018-12)
      Worldwide invasion and range expansion of northern pike (pike; Esox lucius) have been linked to the decline of native fishes and new techniques are needed to assess the effects of invasion over broad geographic scales. In Alaska, pike are native north and west of the Alaska Mountain Range but were introduced into Southcentral Alaska in the 1950s and again in the 1970s. To investigate the history of the invasion into Southcentral Alaska, I identified 7,889 single nucleotide polymorphisms (SNPs) from three native and seven introduced populations in Alaska and examined genetic diversity, structure, and affinities of native and invasive pike. Pike exhibited low genetic variability in native populations (mean heterozygosity = 0.0360 and mean π = 0.000241) and further reductions in introduced populations (mean heterozygosity = 0.0227 and mean π = 0.000131), which suggests a bottleneck following introduction. Population differentiation was high among some populations (global FST = 0.424; max FST = 0.668) when compared to other freshwater fishes. I identified five genetically distinct clusters of populations, consisting of three native groups, a single Susitna River basin invasive group, and a Kenai Peninsula group, with little evidence of admixture among groups. The extremely reduced genetic diversity observed in invasive northern pike populations does not appear to affect their invasion success as the species range Southcentral Alaska continues to expand. To assess the vulnerability of five species of Pacific salmon (Oncorhynchus spp.) to the invasion, I combined intrinsic potential habitat modeling, connectivity estimates, and Bayesian networks across 22,875km of stream reaches in the Matanuska-Susitna basin, Alaska, USA. Pink salmon were the most vulnerable species, with 15.2% (2,458 km) of their range identified as "highly" vulnerable. They were followed closely by chum salmon (14.8%) and coho salmon (14.7%). Finally, analysis of the intersection of vulnerable salmon habitats revealed 1,001 km of streams that were highly vulnerable for all five Pacific salmon. This framework is easy to implement, adaptable to any species or region, and cost effective. With increasing threats of species introductions, fishery managers need new tools like those described here to efficiently identify critical areas shared by multiple species, where management actions can have the greatest impact.
    • Mercury concentrations and feeding ecology of fishes in Alaska

      Cyr, Andrew Philip; López, Juan Andres; O'Hara, Todd; Wooller, Matthew; Seitz, Andrew (2019-05)
      Mercury (Hg) is a ubiquitous contaminant found in nearly every fish species analyzed. Certain forms of Hg accumulate efficiently in fish tissues, sometimes reaching concentrations of concern for human and wildlife health when consumed. This has motivated considerable research and interventions surrounding fish consumption with Hg concentrations as the underlying cause of over 80% of fish consumption advisories in the United States and Canada. The ecological and physiological drivers that influence the concentrations of Hg in fishes are complex and vary among taxa spatially and temporally. Studying these drivers and their respective influences on Hg concentrations can help elucidate observed differences in Hg concentrations across space and time, which can then be used to improve management and consumption strategies. Here I present a series of studies focused on the chemical feeding ecology of Hg by measuring total Hg (THg) concentrations and ratios of nitrogen and carbon stable isotopes in multiple fish species from three regions in Alaska. In Chapter 2 I described foundational field collection efforts to characterize the fish communities from West Creek and the Taiya River in Klondike Gold Rush National Historical Park, and the Indian River in Sitka Historical National Park, Alaska. This chapter and agency report presents a survey of the fish species assemblage of the rivers and laid the framework for the regional analyses I conducted in the study presented in Chapter 3. In Chapter 3 I report inter- and intra-river comparisons of THg concentrations and associated feeding ecology of riparian Dolly Varden, separated by anadromous barriers in each system. I concluded that resident Dolly Varden that co-habit riverine locations with spawning salmon consume more salmon eggs than resident Dolly Varden from other locations of the same river that do not co-habit with spawning salmon. This is reflected in the isotopic composition of their tissues, and subsequently the THg concentrations of these fish are lower relative to Dolly Varden from parts of the same river above anadromous barriers. In Chapter 4, I describe regional patterns of THg concentrations and stable isotope values of carbon and nitrogen in nine species of fish and invertebrates from the Bering Sea and North Pacific Ocean along the Aleutian Islands, using Steller sea lion management zones as a spatial framework. I determine that most species from the Western Aleutian Islands have greater THg concentrations, and more negative δ¹³C values than those from the Central Aleutian Islands, indicating ecosystem-wide differences in THg concentrations and fish feeding ecology. I also determined that Amchitka Pass, a well-documented oceanographic and ecological divide along the Aleutian Island chain, aligns better with differences in THg concentrations than the boundary between Steller sea lion management zones. In Chapter 5, I report THg and methylmercury concentrations in fishes of Kotzebue Sound, including seven species that are important for subsistence users. I determined that fork length influences Hg concentrations within individual species, and that trophic relationships within a food web, a factor associated with biomagnification, influences Hg concentrations across the entire food web. I also observed that muscle tissues from virtually every individual fish had Hg loads below the State of Alaska's criteria for unlimited consumption. Taken together, the work conducted in this dissertation helps us better understand the ecological dynamics of Hg in aquatic food webs and has contributed to Hg monitoring of fish resources across parts of Alaska.
    • Traditional knowledge and fish biology: a study of Bering cisco in the Yukon River Delta, Alaska

      Runfola, David Michael; Sutton, Trent; Carothers, Courtney; Norton, David W.; Schneider, William (2011-05)
      Relatively little is known about the biology of whitefishes (subfamily Coregoninae) in Alaska. To address this shortcoming, I combined social and biological science methods to examine whitefish in the Yukon River delta, Alaska. This study had two objectives: (1) to collaborate with Yup'ik subsistence fishers in sharing their knowledge of whitefish; and (2) to describe the life history of Bering cisco Coregonus laurettae. In August 2004, interview participants discussed Yup'ik traditional knowledge of whitefish. Participants shared knowledge of Bering cisco and other whitefish species. Interviews demonstrated the need for greater awareness of traditional knowledge, and the importance of communicating this knowledge with scientists. In addition, 120 Bering ciscoes were collected in August 2005 and 2006 with gill nets in the Yukon River delta, Alaska. Bering ciscoes ranged in fork length from 146 to 490 mm (mean = 321 mm) and in weight from 32 to 735 g (mean = 304 g). Fish ranged in age from 0 to 6, with one age-11 individual observed. Diet analysis showed that Bering ciscoes fed primarily on sticklebacks. My study records important social and biological data regarding Bering cisco, linking ethnography and fish biology as a means of investigating this poorly understood species.
    • The use of aerial imagery to map in-stream physical habitat related to summer distribution of juvenile salmonids in a Southcentral Alaskan stream

      Perschbacher, Jeff; Margraf, F. Joseph; Hasbrouck, James; Wipfli, Mark; Prakash, Anupma (2011-12)
      Airborne remote sensing (3-band multispectral imagery) was used to assess in-stream physical habitat related to summer distributions of juvenile salmonids in a Southcentral Alaskan stream. The objectives of this study were to test the accuracy of using remote sensing spectral and spatial classification techniques to map in-stream physical habitat, and test hypotheses of spatial segregation of ranked densities of juvenile chinook salmon Oncorhynchus tschwytscha, coho salmon O. kisutch, and rainbow trout O. mykiss, related to stream order and drainage. To relate habitat measured with remote sensing to fish densities, a supervised classification technique based on spectral signature was used to classify riffles, non-riffles, vegetation, shade, gravel, and eddy drop zones, with a spatial technique used to classify large woody debris. Combining the two classification techniques resulted in an overall user's accuracy of 85%, compared to results from similar studies (11-80%). Densities of juvenile salmonids was found to be significantly different between stream orders, but not between the two major drainages. Habitat data collected along a 500-meter stream reach were used successfully to map in-stream physical habitat for six river-kilometers of a fourth-order streams. The use of relatively inexpensive aerial imagery to classify in-stream physical habitats is cost effective and repeatable for mapping over large areas, and should be considered an effective tool for fisheries and land-use managers.