• Identification of spawning areas and the influence of environmental variation on freshwater migration timing and in-river movements of adult coho salmon in the Buskin River, Alaska

      Stratton, Michelle Eileen; Westley, Peter; Finkle, Heather; Falke, Jeff (2019-08)
      The timing of freshwater entry by anadromous salmonids varies markedly among species and populations within species and is frequently used as an indicator of local adaptation to sitespecific patterns of selection. Although complex stock structure is most often associated with large watersheds that have extensive habitat diversity, even small drainages can produce multiple co-occurring stocks that differ in migratory timing. In addition, migration timing can be influenced by within-year environmental conditions experienced by migrating individuals en route to spawning sites, staging near the river mouth in the ocean, or within the river itself. Each stage of migration through both freshwater and saltwater could be altered based on climatic drivers and how each individual fish reacts to these stressors. The objective of this thesis was to assess the potential for stock structure in Coho Salmon within a small coastal watershed on Kodiak Island, Alaska by 1) identifying important differences in spawning and holding locations associated with run timing, length, and stream life between main stem and tributary spawners, 2) quantifying the influence of large-, intermediate-, and local-scale climate variables on freshwater entrance timing and in-river movements. To address the first objective, fish were tracked to their spawning locations using acoustic telemetry in three spawning seasons (2015-2017). I detected no statistically or biologically meaningful differences in body size (length, mm) or migration timing into the river between main stem and tributary spawning fish. Unexpectedly, I found that a large portion of fish (80%) utilize the lake during their in-river migration suggesting the lake may represent critical staging habitat for adult Coho Salmon prior to spawning. I also identified holding habitat throughout the river that both spawning groups consistently used across years that also appears to be important to premature migrating Coho Salmon. In Chapter Two, I analyzed 33 years of freshwater entrance timing data and utilized radio tags to track in-river movement to quantify the influence of precipitation and temperature on total distance moved and probability of moving. Despite marked variation among years, I found no evidence of a temporal trend in entrance timing based on escapement counts, which contrasts with other recent examples throughout Alaska reporting changes in run timing. The strongest influence on timing of freshwater entry was ocean sea surface temperature, where cold temperatures delayed entry up to 11 days. Within-river movements were positively related to precipitation and temperature, confirming local traditional knowledge in this system, and consistent with life history patterns of Coho Salmon. The primary messages of this thesis are that i) any within-watershed stock structure is unlikely to be differentially affected by harvest or management given overlapping run timing, body size, and use of main stem holding areas; future population genetics analyses would be an obvious and illuminating next step to assess the extent to which main stem and tributary spawners are reproductively isolated groups; ii) both main stem and tributary spawners use Buskin Lake as holding habitat prior to spawning, and thus assumptions that fish that enter the upper watershed are destined to spawn in headwater tributaries are invalid, which in turn limits the utility of enumerating adult passage into the lake for escapement-based management, iii) adult freshwater entrance timing is highly variable but not changing systematically through time, though the extent to which the variation in timing reflects environmental response vs. uncertainty in the counts at the weir is unknown, and iv) low precipitation and warm temperatures suppress movement and result in protracted use of main stem and lake habitats for holding, which may put some individuals at risk to angler harvest or, in extreme events, potentially low dissolved oxygen environments. Spatial management that restricts fishing in locations of known primary holding habitats may be an option to reduce probability of mortality and stress in years of low adult abundance.
    • Multi-scale movement of demersal fishes in Alaska

      Nielsen, Julie K.; Seitz, Andrew C.; Loher, Timothy; McDermott, Susanne F.; Mueter, Franz J.; Adkison, Milo D. (2019-05)
      Information on the movement of migratory demersal fishes such as Pacific halibut, Pacific cod, and sablefish is needed for management of these valuable fisheries in Alaska, yet available methods such as conventional tagging are too coarse to provide detailed information on migration characteristics. In this dissertation, I present methods for characterizing seasonal and annual demersal fish movement at multiple scales in space and time using electronic archival and acoustic tags. In Chapter 1, acoustic telemetry and the Net Squared Displacement statistic were used to identify and characterize small-scale movement of adult female Pacific halibut during summer foraging in a Marine Protected Area (MPA). The dominant movement pattern was home range behavior at spatial scales of less than 1 km, but a more dispersive behavioral state was also observed. In Chapter 2, Pop-up Satellite Archival Tags (PSATs) and acoustic tags were deployed on adult female Pacific halibut to determine annual movement patterns relative to MPA boundaries. Based on observations of summer home range behavior, high rates of year-round MPA residency, migration timing that largely coincided with winter commercial fisheries closures, and the demonstrated ability of migratory fish to return to previously occupied summer foraging areas, the MPA is likely to be effective for protecting both resident and migrant Pacific halibut brood stock year-round. In Chapter 3, I adapted a Hidden Markov Model (HMM) originally developed for geolocation of Atlantic cod in the North Sea for use on demersal fishes in Alaska, where maximum daily depth is the most informative and reliable geolocation variable. Because depth is considerably more heterogeneous in many regions of Alaska compared to the North Sea, I used simulated trajectories to determine that the degree of bathymetry heterogeneity affected model performance for different combinations of likelihood specification methods and model grid sizes. In Chapter 4, I added a new geolocation variable, geomagnetic data, to the HMM in a small-scale case study. The results suggest that the addition of geomagnetic data could increase model performance over depth alone, but more research is needed to continue validation of the method over larger areas in Alaska. In general, the HMM is a flexible tool for characterizing movement at multiple spatial scales and its use is likely to enrich our knowledge about migratory demersal fish movement in Alaska. The methods developed in this dissertation can provide valuable insights into demersal fish spatial dynamics that will benefit fisheries management activities such as stock delineation, stock assessment, and design of space-time closures.
    • Spatial patterns, environmental correlates, and potential seasonal migration triangle of Arctic cod (Boreogadus saida) distribution in the Chukchi and Beaufort seas

      Forster, Caitlin; Norcross, Brenda; Mueter, Franz; Seitz, Andrew; Longerwell, Elizabeth (2019-05)
      Arctic Cod (Boreogadus saida) is a key forage fish species in the Arctic marine ecosystem and provides a critical energetic link between lower and upper trophic levels. Despite its ecological importance, spatially explicit studies synthesizing Arctic Cod distribution across a multitude of research efforts previously have not been conducted in the western portion of its range. I used spatial generalized additive models (GAM) to map the distribution of Arctic Cod by size class and relative to environmental variables. I compiled demersal trawl data from 21 research cruises conducted from 2004 to 2017 in the Chukchi and Beaufort seas, and investigated size-specific patterns in distribution to infer movement ecology of Arctic Cod as it develops from juvenile to adult life stages. High abundances of small, juvenile Arctic Cod (<70 mm total length) in the northeastern Chukchi Sea and western Beaufort Sea were separated from another region of high abundances in the eastern Beaufort Sea, near the US and Canadian border, suggesting possible population structure in the Pacific Arctic. In both the Chukchi and Beaufort seas, large, adult Arctic Cod (>130 mm total length) were found offshore and spatially segregated from small and medium (71-130 mm total length) fish, indicating an ontogenetic offshore movement of Arctic Cod as it matures. Relating environmental correlates to Arctic Cod abundance demonstrated that temperature and salinity were related to juvenile distribution patterns, while depth was the primary correlate of adult distribution. Furthermore, a comparison of spring and summer 2017 abundances of Arctic Cod in the southern Chukchi Sea, from the Bering Strait to Cape Lisburne found low abundance in the spring when compared to the summer. Differences in Arctic Cod abundance at different times of year suggest that Arctic Cod migrate seasonally, potentially following patterns of biological production in the Chukchi Sea. Arctic Cod migration may follow a classical 'migration triangle' route between nursery grounds as juveniles, feeding grounds as subadults, and spawning grounds as adults, in relation to ice cover and seasonal production in the Chukchi Sea. The analysis presented here is necessary to address federally mandated research requirements, which include improving understanding of stock structure and resolving essential fish habitat (EFH) for different life stages, as well as to gain better general understanding of the role of Arctic Cod in the Pacific Arctic.