• The Treeline Ecotone In Interior Alaska: From Theory To Planning And The Ecology In Between

      Wilmking, Martin; Juday, Glenn Patrick (2003)
      Treelines have been the focus of intense research for nearly a hundred years, also because they represent one of the most visible boundaries between two ecological systems. In recent years however, treelines have been studied, because changes in forest ecosystems due to global change, e.g. treeline movement, are expected to manifest first in these areas. This dissertation focuses on the elevational and latitudinal treelines bordering the boreal forest of interior Alaska. After development of a conceptional model of ecotones as three-dimensional spaces between ecosystems, we offer a historical perspective on treeline research and its broader impact in the Brooks Range, Alaska. Dendrochronological analysis of >1500 white spruce (Picea glauca (Moench [Voss])) at 13 treeline sites in Alaska revealed both positive and negative growth responses to climate warming, challenging the widespread assumption that northern treeline trees grow better with warming climate. Hot Julys decreased growth of ~40% of white spruce at treeline in Alaska, whereas warm springs enhanced growth of others. Growth increases and decreases appear at temperature thresholds, which have occurred more frequently in the late 20th century. Based on these relationships between tree-growth and climate as well as using landscape characteristics, we modeled future tree-growth and distribution in two National Parks in Alaska and extrapolated the results into the 21 st century using climate scenarios from five General Circulation Models. In Gates of the Arctic National Park, our results indicate enhanced growth at low elevation, whereas other areas will see changes in forest structure (dieback of tree-islands, infilling of existing stands). In Denali National Park, our results indicate possible dieback of white spruce at low elevations and treeline advance and infilling at high elevations. This will affect the road corridor with a forest increase of about 50% along the road, which will decrease the possibility for wildlife viewing. Surprisingly, aspect did not affect tree growth-climate relationships. Without accounting for opposite growth responses under warming conditions, temperature thresholds, as well as meso-scale changes in forest distribution, climate reconstructions based on ring-width will miscalibrate past climate, and biogeochemical and dynamic vegetation models will overestimate carbon uptake and treeline advance under future warming scenarios.
    • Using GIS-based and remotely sensed data for early winter moose (Alces alces gigas) survey stratification

      Clyde, Karen J. (2005-05)
      Stratification of moose survey areas is a key step to reduce population estimation variance. In the Yukon and Alaska, use of fixed-area grids for early winter moose counts combined with the increasing availability of GIS and remotely sensed data provide the opportunity to develop standardized and repeatable habitat-based stratifications. I used univariate comparisons, stepwise regression and AIC modeling to describe moose distribution as a function of landscape level variables for an area in west central Yukon during 1998 and 1999. Results quantified early winter habitat use of upland shrub habitats and support previous observations for early winter moose habitat use in Alaska, Minnesota and Montana. Number of patches, in association with areas of alpine and shrubs, were found to be highly influential for survey blocks where moose are expected to be present and in high numbers. Overall, model performance based on relative abundance of moose was less predictive than for blocks where moose were present or absent. Spatial resolution of GIS and remotely sensed data used in this study (25 m grid cells) provided sufficient spatial detail to generate correlations between moose presence and habitat for a first level stratification.