• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Master's Projects
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Master's Projects
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Ugnu pilot area - simulation model and sensitivity analysis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wooster_A_2020.pdf
    Size:
    13.23Mb
    Format:
    PDF
    Download
    Author
    Wooster, Arin J.
    Chair
    Dandekar, Abhijit
    Ning, Samson
    Committee
    Zhang, Yin
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11892
    Abstract
    Collaborating with Hilcorp Alaska, LLC, the Ugnu pilot area is the subject of this project. Hilcorp Alaska is conducting field pilot test at Milne Point Field to prove commerciality with Ugnu heavy oil as well as an on-going Milne viscous oil polymer flood field pilot test in the Schrader Bluff sands. The Ugnu sand heavy oil represents much of the heavy oil on Alaska’s North Slope and has potential for future development. Typical heavy oil has a viscosity of 1,000 - 10,000 centipoise, approximately akin to viscosities of honey and molasses, respectively. North Slope heavy oil is located around 3,000-foot depths and typically overlays existing fields. The project involves a reservoir simulation model and sensitivity analysis to support developmental drilling plans from a Milne Point Unit pad. Necessary geologic and reservoir properties were provided for usage in this project by Hilcorp. Production data was provided for history matching. Field geologic background was also supplied to aid in the understanding of the reservoir. The reservoir simulation model was built using Computer Modelling Group software, namely Builder and IMEX. The first model iteration contained one producer in an 8,500-foot lateral pattern. Further iterations included additional producers and injectors for waterflood and polymer flood studies. Conclusions and recommendations were drawn upon analyzing the reservoir simulation results centering around favorable production strategies, polymer flood performance, comparison to the on-going Milne viscous oil polymer flood pilot, and future polymer flood studies. Completed objectives of this project included: 1. Developing a numerical reservoir simulation model for the Ugnu MB sand in the pilot area; 2. Evaluating the productivity of horizontal wells in the Ugnu MB sand; 3. Predicting ultimate oil recovery with waterflood and polymer flood; 4. Predicting polymer utilization, polymer injected per incremental oil barrels over waterflood.
    Description
    Master's Project (M.S.) University of Alaska Fairbanks, 2020
    Date
    2020-05
    Type
    Thesis
    Collections
    Master's Projects (Petroleum Engineering)
    Master's Projects

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2021 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.