• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Review and case study of electric submersible pump performance with dispersions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ellexson_D_2020.pdf
    Size:
    23.12Mb
    Format:
    PDF
    Download
    Author
    Ellexson, Dexter Bryant
    Chair
    Awoleke, Obadare
    Ning, Samson
    Committee
    Dandekar, Abhijit
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/11901
    Abstract
    Centrifugal pump performance is very sensitive to fluid viscosity, gas fraction, and flow pattern in impeller channels. Viscous oil reduces the head and rate capacity of the pump. High gas fraction reduces the head capacity of the pump at high rates and leads to unstable surging at low rates. If the flow pattern in the impeller transitions to an elongated bubble the pump can gas-lock causing loss of production and excessive heat buildup. The complex geometry and 3-dimensional flow in a pump stage make the analysis of flow in a pump difficult without simplifying assumptions. Empirical and mechanistic models have been developed for correcting pump performance for viscosity, gas fraction, and predicting flow pattern within the impeller with reasonable accuracy. Difficulties arise when produced fluids form stable dispersions. Foams, emulsions, and solid suspensions make the determination of viscosity, gas separation efficiency, and flow pattern more difficult. Interfacial properties between phases become important in determining the bulk fluid properties, and the presence of surfactants exacerbates the interfacial effects. The objective of this project is to describe the fundamentals of electrical submersible centrifugal pumps, ESPs, and the effects that produced fluids have on their performance. These findings are then used to evaluate a case study of an ESP installed in a well with foamy and viscous crude. The ESP exhibits reduced head and rate compared to predicted viscous and gas corrections. Including interfacial effects on the fluid viscosity allow a satisfactory performance match of pump performance to be achieved. The effect of foam on pump performance can be attributed to the increased viscosity exhibited when gas behaves as a dispersed phase in a continuous oil phase rather than a separate phase in a mixture.
    Description
    Master's Project (M.S.) University of Alaska Fairbanks, 2020
    Date
    2020-12
    Type
    Master's Project
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.