• Specific Ion–Protein Interactions Influence Bacterial Ice Nucleation

      Schwidetzky, Ralph; Lukas, Max; YazdanYar, Dr. Azade; Kunert, Dr. Anna T.; Pöschl, Dr. Ulrich; Domke, Katrin F.; Fröhlich-Nowoisky, Dr. Janine; Bonn, Prof Dr. Mischa; Koop, Prof. Dr. Thomas; Nagata, Dr. Yuki; et al. (European Chemical Societies Publishing, 2021-01-19)
      Ice nucleation-active bacteria are the most efficient ice nucleators known, enabling the crystallization of water at temperatures close to 0 °C, thereby overcoming the kinetically hindered phase transition process at these conditions. Using highly specialized ice-nucleating proteins (INPs), they can cause frost damage to plants and influence the formation of clouds and precipitation in the atmosphere. In nature, the bacteria are usually found in aqueous environments containing ions. The impact of ions on bacterial ice nucleation efficiency, however, has remained elusive. Here, we demonstrate that ions can profoundly influence the efficiency of bacterial ice nucleators in a manner that follows the Hofmeister series. Weakly hydrated ions inhibit bacterial ice nucleation whereas strongly hydrated ions apparently facilitate ice nucleation. Surface-specific sum-frequency generation spectroscopy and molecular dynamics simulations reveal that the different effects are due to specific interactions of the ions with the INPs on the surface of the bacteria. Our results demonstrate that heterogeneous ice nucleation facilitated by bacteria strongly depends upon the nature of the ions, and specific ion–protein interactions are essential for the complete description of heterogeneous ice nucleation by bacteria.
    • Ice Nucleation Activity of Perfluorinated Organic Acids.

      Schwidetzky, Ralph; Sun, Yuling; Fröhlich-Nowoisky, Janine; Kunert, Anna T; Bonn, Mischa; Meister, Konrad (ACS Publications, 2021-03-31)
      Perfluorinated acids (PFAs) are widely used synthetic chemical compounds, highly resistant to environmental degradation. The widespread PFA contamination in remote regions such as the High Arctic implies currently not understood long-range atmospheric transport pathways. Here, we report that perfluorooctanoic acid (PFOA) initiates heterogeneous ice nucleation at temperatures as high as −16 °C. In contrast, the eight-carbon octanoic acid, perfluorooctanesulfonic acid, and deprotonated PFOA showed poor ice nucleating capabilities. The ice nucleation ability of PFOA correlates with the formation of a PFOA monolayer at the air−water interface, suggesting a mechanism in which the aligned hydroxyl groups of the carboxylic acid moieties provide a lattice matching to ice. The ice nucleation capabilities of fluorinated compounds like PFOA might be relevant for cloud glaciation in the atmosphere and the removal of these persistent pollutants by wet deposition.
    • Disaccharide Residues are Required for Native Antifreeze Glycoprotein Activity.

      Sun, Yuling; Giubertoni, Giulia; Bakker, Huib J; Liu, Jie; Wagner, Manfred; Ng, David Y W; Devries, Arthur L; Meister, Konrad (ACS Publications, 2021-05-06)
      Antifreeze glycoproteins (AFGPs) are able to bind to ice, halt its growth, and are the most potent inhibitors of ice recrystallization known. The structural basis for AFGP’s unique properties remains largely elusive. Here we determined the antifreeze activities of AFGP variants that we constructed by chemically modifying the hydroxyl groups of the disaccharide of natural AFGPs. Using nuclear magnetic resonance, two-dimensional infrared spectroscopy, and circular dichroism, the expected modifications were confirmed as well as their effect on AFGPs solution structure. We find that the presence of all the hydroxyls on the disaccharides is a requirement for the native AFGP hysteresis as well as the maximal inhibition of ice recrystallization. The saccharide hydroxyls are apparently as important as the acetyl group on the galactosamine, the α-linkage between the disaccharide and threonine, and the methyl groups on the threonine and alanine. We conclude that the use of hydrogen-bonding through the hydroxyl groups of the disaccharide and hydrophobic interactions through the polypeptide backbone are equally important in promoting the antifreeze activities observed in the native AFGPs. These important criteria should be considered when designing synthetic mimics.
    • pH effects on the molecular structure and charging state of b-Escin biosurfactants at the air-water interface

      Glikman, Dana; Rey, Natalia García; Richert, Manuela; Meister, Konrad; Braunschweig, Björn (Elsevier, 2021-09-20)
      Saponins like b-escin exhibit an unusually high surface activity paired with a remarkable surface rheology which makes them as biosurfactants highly interesting for applications in soft matter colloids and at interfaces. We have applied vibrational sum-frequency generation (SFG) to study b-escin adsorption layers at the air-water interface as a function of electrolyte pH and compare the results from SFG spectroscopy to complementary experiments that have addressed the surface tension and the surface dilational rheology. SFG spectra of b-escin modified air-water interfaces demonstrate that the SFG intensity of OAH stretching vibrations from interfacial water molecules is a function of pH and dramatically increases when the pH is increased from acidic to basic conditions and reaches a plateau at a solution pH of > 6. These changes are attributable to the interfacial charging state and to the deprotonation of the carboxylic acid group of b-escin. Thus, the change in OAH intensity provides qualitative information on the degree of protonation of this group at the air-water interface. At pH < 4 the air-water interface is dominated by the charge neutral form of b-escin, while at pH > 6 its carboxylic acid group is fully deprotonated and, consequently, the interface is highly charged. These observations are corroborated by the change in equilibrium surface tension which is qualitatively similar to the change in OAH intensity as seen in the SFG spectra. Further, once the surface layer is charge neutral, the surface elasticity drastically increases. This can be attributed to a change in prevailing intermolecular interactions that change from dominating repulsive electrostatic interactions at high pH, to dominating attractive interactions, such as hydrophobic and dispersive interactions, as well as, hydrogen bonding at low pH values. In addition to the clear changes in OAH intensity from interfacial H2O, the SFG spectra exhibit drastic changes in the CAH bands from interfacial b-escin which we relate to differences in the net molecular orientation. This orientation change is driven by tighter packing of b-escin adsorption layers when the b-escin moiety is in its charge neutral form (pH < 4).
    • Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial Ice Nucleators

      Schwidetzky, R.; Sudera, P.; Backes, A. T.; Pöschl, U.; Bonn, M.; Fröhlich-Nowoisky, J.; Meister, Konrad (American Chemical Society, 2021-11-01)
      Ice-nucleating proteins (INPs) from Pseudomonas syringae are among the most active ice nucleators known, enabling ice formation at temperatures close to the melting point of water. The working mechanisms of INPs remain elusive, but their ice nucleation activity has been proposed to depend on the ability to form large INP aggregates. Here, we provide experimental evidence that INPs alone are not sufficient to achieve maximum freezing efficiency and that intact membranes are critical. Ice nucleation measurements of phospholipids and lipopolysaccharides show that these membrane components are not part of the active nucleation site but rather enable INP assembly. Substantially improved ice nucleation by INP assemblies is observed for deuterated water, indicating stabilization of assemblies by the stronger hydrogen bonds of D2O. Together, these results show that the degree of order/disorder and the assembly size are critically important in determining the extent to which bacterial INPs can facilitate ice nucleation.
    • Cryofouling avoidance in the Antarctic scallop Adamussium colbecki

      Wong, William S. Y.; Hauer, Lukas; Cziko, Paul A.; Meister, Konrad (Springer Nature, 2022-01-21)
      The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones.
    • Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins

      Sun, Yuling; Maltseva, Daria; Liu, Jie; Hooker II, Theordore; Mailänder, Volker; Ramløv, Hans; DeVries, Arthur, L.; Bonn, Mischa; Meister, Konrad (American Chemical Society, 2022-01-26)
      Antifreeze proteins (AFPs) and glycoproteins (AFGPs) are exemplary at modifying ice crystal growth and at inhibiting ice recrystallization (IRI) in frozen solutions. These properties make them highly attractive for cold storage and cryopreservation applications of biological tissue, food, and other water-based materials. The specific requirements for optimal cryostorage remain unknown, but high IRI activity has been proposed to be crucial. Here, we show that high IRI activity alone is insufficient to explain the beneficial effects of AF(G)Ps on human red blood cell (hRBC) survival. We show that AF(G)Ps with different IRI activities cause similar cell recoveries of hRBCs and that a modified AFGP variant with decreased IRI activity shows increased cell recovery. The AFGP variant was found to have enhanced interactions with a hRBC model membrane, indicating that the capability to stabilize cell membranes is another important factor for increasing the survival of cells after cryostorage. This information should be considered when designing novel synthetic cryoprotectants.
    • Toward Understanding Bacterial Ice Nucleation

      Lukas, Max; Schwidetzky, Ralph; Eufemio, Rosemary J.; Bonn, Mischa; Meister, Konrad (American Chemical Society, 2022-01-27)
      Bacterial ice nucleators (INs) are among the most effective ice nucleators known and are relevant for freezing processes in agriculture, the atmosphere, and the biosphere. Their ability to facilitate ice formation is due to specialized ice-nucleating proteins (INPs) anchored to the outer bacterial cell membrane, enabling the crystallization of water at temperatures up to −2 °C. In this Perspective, we highlight the importance of functional aggregation of INPs for the exceptionally high ice nucleation activity of bacterial ice nucleators. We emphasize that the bacterial cell membrane, as well as environmental conditions, is crucial for a precise functional INP aggregation. Interdisciplinary approaches combining high-throughput droplet freezing assays with advanced physicochemical tools and protein biochemistry are needed to link changes in protein structure or protein–water interactions with changes on the functional level.