• The Yup'ik relationships of qiluliuryaraq (processing intestine)

      Carrlee, Ellen; Schweitzer, Peter; Koester, David; Lee, Molly; Hill, Erica; Plattet, Patrick (2020-12)
      This project explores multiple Native cultural contexts that intersect in the use and understanding of intestine. Gut (tissues of internal organs including stomach, intestine, bladder and esophagus) as a raw material was historically used by many circumpolar cultures to make items like drums, raincoats, hats, windows, sails, containers, and hunting floats. These items are abundant in museum collections, but rarely seen today in cultural practice or the art market. Intestine is a natural material that was replaced by synthetic materials, but its dual physical properties of protection and permeability are the only features replicated by plastics. Examination of intestine as an obsolete material reveals both changes and resilience in different kinds of relationships. Emphasizing the meaning and materiality of gut over analysis of artifacts made from it emphasizes interactions among human, animal, and spiritual beings over formalistic approaches privileging object interpretations. Preferential investigation of a raw material over finished artifacts focuses the study on actions and values in Native places. Fieldwork components for this study include documentation of indigenous gut processing, sewing and repair workshops in museum contexts, processing fresh intestine in the Yup'ik village of Scammon Bay, and discussion of gut with Yup'ik cultural experts. The theoretical approach uses Actor-Network Theory (ANT) as a foundation, animated with practice theory and relational ontology. Since ANT creates space for human, animal, and object agency, reciprocal relationships among these actors will be explored through frameworks of materiality, object biography, gender studies, animal personhood, and the gift. This endeavor may promote a new model for the use of material culture to illuminate Native values. In the case of intestine, its decline in use connects to changes in technology and spirituality while resilience and revitalization of gut technology promotes identity and demonstrates traditional values.
    • Zooplankton community composition in relation to environment and juvenile salmon diets in Icy Strait, Southeast Alaska

      Fergusson, Emily A.; Eckert, Ginny; McPhee, Megan; Heintz, Ron (2020-12)
      Zooplankton in the nearshore marine habitat function as an important prey resource for many pelagic fishes, are a major component of the lower tropic level, and serve as a vital ecosystem indicator. Understanding how the zooplankton community changes in response to fluctuations in biophysical factors is critical in a changing climate and is important to understanding the dynamics of commercially important upper-trophic level species that depend nutritionally on zooplankton. The Alaska Fisheries Science Center's Southeast Coastal Monitoring project has surveyed the pelagic ecosystem in eastern Icy Strait monthly from May to August since 1997 to understand how environmental variation affects the pelagic food web and the sustainability of salmon resources. I used this long-term dataset (1997-2017) to address the goals of this study: 1) to investigate the influence of temperature on the Icy Strait zooplankton community; and 2) to understand how juvenile salmon utilize zooplankton prey in relation to temperature driven fluctuations in the zooplankton community. In Chapter 1, I noted that the composition of the zooplankton community varied in years with anomalously high or low temperatures. I observed shifts in the timing of development in many key taxa during these anomalous years. For example, in anomalously cool years, several taxa were found in higher densities later in the summer than in anomalously warm years. In Chapter 2, I examined how oceanographic factors influenced the diet composition and quality of four species of juvenile Pacific salmon (Oncorhynchus spp.) in Icy Strait (Southeast Alaska) from 2013 to 2017. In 2015 I observed a change in diets, including zooplanktivorous (pink salmon O. gorbuscha, chum salmon O. keta, and sockeye salmon O. nerka) and piscivorous (coho salmon O. kisutch) species, from typically diverse diets to diets dominated by euphausiids. This year was notable for warm waters, deep pycnoclines, and below average zooplankton nutritional quality. Juvenile salmon appeared to supplement their lipid intake and meet nutritional requirements by switching to larger euphausiid prey. The results from these studies increase our understanding of zooplankton community dynamics, salmon trophic relationships, and the resilience and flexibility of the food web during climate-driven reorganizations of the pelagic marine ecosystem.