Cost Effectiveness of Alternative Window Systems in Anchorage, Fairbanks, and Southcentral Alaska
Author
Colt, SteveKeyword
cost-effectivenessalternative window types
Anchorage
natural gas
Southcentral and Fairbanks regions
fuel oil
efficient windows
investment analysis
costs and benefits
double-paned R-1.7 window
R-3.1 window
construction costs
cost of energy
Metadata
Show full item recordAbstract
This research memorandum evaluates the cost-effectiveness of installing alternative window types in a prototype new home in Alaska. The analysis is performed for Anchorage, using natural gas as the fuel; and for the Southcentral and Fairbanks regions, using oil as the fuel. The comparison between baseline 1 and more efficient windows is structured as an investment analysis. We look at the incremental costs and benefits of the more efficient windows relative to the less efficient. All other variables, such as the cost of the walls, floors, and ceiling of the house, are held constant and therefore "drop out" of the analysis. Compared to double-paned R-1.7 windows, more efficient R-3.1 windows are cost effective in Anchorage under a wide of assumptions about fuel costs and construction costs. This result holds even more strongly in Fairbanks and Southcentral, where the cost of energy is far higher.Date
1991Publisher
Institute of Social and Economic Research, University of Alaska.Type
OtherCollections
Related items
Showing items related by title, author, creator and subject.
-
Egress Window TestsRood, Robert (1985-08)
-
Using Project Management Techniques to Design a PMP Mathematics Study App for the Windows Universal PlatformFreeman, Jen (University of Alaska Anchorage, 2017-05-01)Background As a late comer to the smartphone market, Microsoft has fallen behind the Apple and Google app ecosystems in the quantity and quality of apps offered. To attract developer talent, Microsoft released the Universal Windows Platform which enables apps to run across Windows devices with few additional modifications. Although the Windows app ecosystem has realized an increased number of available apps, few apps related to project management are currently available. About the project This project will design a PMP Certification Mathematics Study App for the Universal Windows Platform which will serve as a reference and study aid for the PMP certification exam. The app will be available to mobile and PC users who are utilizing the Microsoft Windows 10 and Windows 8 operating systems. Features of the app will include project management formula lookup, formula flashcards, and practice problems. At the completion of the project, the app will be submitted to the Windows Store for review and publishing to the Windows 10 application ecosystem. Approach The project scope will include the design of the app from requirements gathering to completion. Project deliverables will be aligned with Windows store applications evaluation criteria for responsiveness, reliability, and style. This project will conclude with submission of a completed application design to the project sponsor.
-
Perchlorate toxicity in fish: trophic transfer, developmental windows, and histological biomarkersFurin, Christoff Gregory; von Hippel, Frank; O'Hara, Todd M.; Buck, C. Loren; Wipfli, Mark S. (2014-08)The perchlorate anion is an oxygenated chlorine compound often used by the military as an oxidizer in solid rocket propellant and by industry in numerous other applications. It is a known endocrine disruptor and competitively inhibits the uptake of iodide into thyroid tissue in a concentration dependent manner, effectively reducing production of thyroid hormones. Perchlorate is highly water soluble, kinetically inert and has low adsorption tendency, making it a persistent and mobile aquatic contaminant. Perchlorate has been detected in drinking water sources throughout the United States and is present in many commercially available food and drink products. The objective of this dissertation was to better understand the bioaccumulation, toxicodynamics and morphological changes caused by perchlorate exposure utilizing northern pike (Esox lucius) and the threespine stickleback species (Gasterosteus aculeatus) model. The first research chapter (chapter 2) examines the potential for bioaccumulation and trophic transfer of perchlorate in northern pike exposed to 10 and 100 mg/L perchlorate via ambient water and food. As expected, perchlorate does not biomagnify, but does concentrate in the gastrointestinal tract tissue of pike. At the lower exposure concentration (10 mg/L) for combined water and food exposure, greater than additive tissue concentrations were detected indicating the need for regulatory testing to consider not only contaminated water but the associated contaminated food in the contaminated ecosystem (e.g., some studies provide food that is not contaminated while fish are exposed only to contaminated water). The following two chapters (chapters 3 and 4) examine the morphologic effects of exposure timing and duration on developing stickleback utilizing a unique upshift/downshift exposure regime to determine if critical developmental windows of perchlorate sensitivity exist for two exposure concentrations (30 and 100 mg/L). In chapter three, gross morphology (body size and skeletal armor traits) were quantified in sexually mature fish. The results demonstrate that growth can be suppressed with continuous exposure beginning within the first 14 days post fertilization (dpf). Skeletal armor traits responded variably to perchlorate exposure, with some increasing, some decreasing and others developing normally. The traits measured in this study (excluding standard length) were not sensitive to the timing of exposure (i.e., no definitive critical windows), but responses were concentration-dependent. Chapter four examines thyroid tissue histomorphological endpoints, sex ratio, and gonadal maturity in stickleback exposed to perchlorate (30 and 100 mg/L) for varying times and durations. Thyroid tissue responded with increased follicle hyperplasia, decreased area of colloid, increased angiogenesis, and follicle cell hypertrophy. Within the first 42 dpf, a critical window emerged for follicle hyperplasia and area of colloid. Stickleback rescued (removed from perchlorate contaminated water) anytime up to 305 dpf recovered from follicle hyperplasia and reduced colloid area. Angiogenesis increased in fish exposed to perchlorate and a critical window was detected for fish exposed to 30 mg/L anytime between 7 and 154 dpf. Recovery from angiogenesis did not occur. The ratio of males to females and gonadal development were altered in stickleback exposed to perchlorate continuously beginning within the first 14 dpf. Sex ratio was skewed toward males in a concentration-dependent manner, which could be due either to a masculinizing effect of perchlorate on sexual development or to differential survival of the sexes. Additionally, gonadal maturation was delayed for both sexes as the proportion of late stage testes and oocytes decreased in perchlorate exposed fish. Overall, these results demonstrate that the effects of perchlorate on aquatic vertebrates are complex. Movement within and between organisms is complicated due to the iodide concentrating mechanism of some tissues. Abnormalities of growth and skeletal armor traits are caused by perchlorate exposure and both are important to the survival and reproductive success of stickleback. In addition, as expected, the histomorphology of thyroid tissue is a responsive biomarker of perchlorate exposure in stickleback. Critical windows of sensitivity to perchlorate exist during early development and future research should scrutinize the biochemical mechanisms driving changes in thyroid condition and abnormal development, particularly for reproductive endpoints.