Paleocene depositional history of the Cretaceous-Paleogene impact basin, Yucatan Peninsula, Mexico
Author
O'Malley, Katherine E.Chair
Whalen, MichaelCommittee
Fowell, SarahMcCarthy, Paul
Keyword
Sedimentation and depositionChicxulub Crater
Sediments
Drill cores
Impact craters
Yucatan Peninsula
Cretaceous-Paleogene boundary
Stratigraphic geology
Geology
Geochemistry
Cretaceous geology
Paleogene geology
Paleocene geology
Metadata
Show full item recordAbstract
In the spring of 2016, the International Ocean Discovery Program set out on Expedition 364 to recover core from the peak ring of Chicxulub Impact Crater at Site M0077. In total, 829 m of core was collected spanning granite to Paleogene sedimentary rocks. From this core, we have a well-preserved record of the Paleocene, which represents ~10 million years post impact in just under 10 m of sedimentary rock record. This has presented an incredible research opportunity, as we have gained invaluable information on how the environment responded and recovered from the global catastrophe that was the Chicxulub Impact. The Paleocene at M0077 is highly condensed and comprised of predominantly pelagic carbonate rocks. High resolution core logging and thin section analysis were used to identify facies in the Paleocene. Facies include marlstone, argillaceous wackestone, foraminiferal wackestone, and rare coarser grained lithologies such as packstone and grainstone. Overall, the Paleocene exhibits a succession of rhythmically bedded cycles composed of marlstones grading to argillaceous wackestones and capped by foraminiferal wackestones. Coarser grained lithologies only exist in the lower and uppermost portion of the core. In total, 72 cycles that ranged from 5-30 cm thick are identified and grouped into six larger packages based on pattern similarities in color, lithology, ichnofabric indices, and geochemical data. These cycles are interpreted as parasequences, and show predictable stacking patterns that allow us to make sequence stratigraphic analyses. Each package represents one to two systems tracts, and some can be correlated to eustatic sea level change. Recorded in this core is the progression of an initial sea level lowstand immediately post impact, and the fluctuation between highstands, lowstands, and transgressive systems tracts that follow. Major and trace elements were analyzed throughout the core, as well as delta¹³Corg and delta¹⁵Nbulk values. Three sets of geochemical proxies (paleoredox, detrital input, productivity) were used to provide insight into paleoecological conditions. Initial conditions in the crater show a period of high productivity, which tapers off within a million years post impact. Redox conditions vary, and show one major anoxic event, with other enrichments likely representing periods of pore water euxinia or increases in stratification leading to a more robust redox gradient.Description
Thesis (M.S.) University of Alaska Fairbanks, 2020Date
2020-12Type
ThesisCollections
Related items
Showing items related by title, author, creator and subject.
-
Fracture evolution in a fold-and-thrust belt and the adjacent foreland basin: an example from the Northeastern Brooks Range, AlaskaLoveland, Andrea M. (2010-05)"Fracture networks can enhance permeability in a reservoir, creating pathways for fluid migration. This study uses detailed surface and subsurface mapping, new and existing thermal and geochronologic data as well as observations of fractures in outcrop provide a framework for fracture development in the range front region along a surface to subsurface transect in the western part of the northeastern Brooks Range. Set 1 fractures formed prior to 45 Ma at>6 km depth, ahead of the Brooks Range mountain front in response to elevated pore fluid pressure and low differential stress. Set 2 fractures developed during the early stages of folding at a depth of ~7 km. Both Sets 1 and 2 developed synchronously with hydrocarbon generation and may have been early migration pathways, but were likely destroyed during advancement of the thrust belt. Late fracture Sets 3 and 4 formed at shallow depths in the absence of fluids and are probably related to the onset of uplift at ~25 Ma. These late sets postdate regional generation and migration, but may enhance reservoir permeability"--Leaf iii
-
High-Resolution Paleoceanography Of The Gulf Of Alaska, Subarctic Northeast Pacific Ocean, Since The Last Glacial Maximum: Insights Into A Dynamic Atmosphere-Ocean-Ecosystem Linkage At Decadal To Millennial TimescalesAddison, Jason A.; Beget, James E.; Finney, Bruce P.; Bigelow, Nancy H.; Naidu, A. Sathy; Stockwell, Dean A.; Wooller, Matthew J. (2009)Environmental conditions in the Subarctic Northeast Pacific Ocean are an important component of North American climate patterns, as well as a potential driver of Northern Hemisphere climate variability. The North Pacific Ocean is also the terminus of modern global thermohaline circulation, suggesting that paleoceanographic records from this region have the potential to preserve evidence of both climate forcing and response on regional and global scales. A suite of high-resolution marine sediment cores collected from the Gulf of Alaska margin in 2004 provide new paleoceanographic records at decadal and centennial timescales from fjord and continental slope environments. Key findings include: (i) decadal oscillations in marine productivity correlate with previously identified terrestrial records, indicative of forcing by the Aleutian Low pressure cell; (ii) the standard binary model of the modern Pacific Decadal Oscillation (PDO) as the major pattern of ocean-atmosphere variability is insufficient to describe the full range of Holocene paleoenvironmental fluctuations observed in Gulf of Alaska records of marine productivity, freshwater discharge, and bottom-water anoxia; (iii) the North Pacific ecosystem is a sensitive recorder of abrupt climate events observed in global records; and (iv) the fjords of Southeast Alaska contain a detailed record of volcanic activity and fallout events useful for developing composite chronological models of sedimentation that correlate with other regionally important stratigraphic records. Collectively, the results presented here will potentially redefine current theoretical models of atmosphere-ocean-ecosystem variability in the North Pacific Ocean, as well as contribute to a growing body of high-resolution paleoenvironmental time-series datasets from the high latitudes.
-
Geochemical, spatial, and temporal relationships of the intrusives and meta-intrusives of the Pogo deposit, eastern Interior, AKThompson, William D.; Newberry, Rainer; Keskinen, Mary; Mezger, Jochen (2020-12)The Pogo deposit is an intrusion-related gold deposit (IRGD) located approximately 90 km southeast of Fairbanks, Alaska. It consists mainly of shallowly NW dipping quartz veins hosted in amphibolite facies paragneiss and predominately granite orthogneiss bodies. To date the deposit has produced over 4 million ounces of gold. U-Pb zircon dating of the orthogneisses shows they have Devonian-Mississippian protolith ages. Dates from the metamorphic zircons, established by microprobe Th data and cathodoluminescence studies, constrain a mid-Cretaceous metamorphic event to ~116 Ma. Recrystallization of kyanite to sillimanite and zircon recrystallization indicates this was a large fluid flux event that predated mineralization by 10 million years. Due to the fine-grained nature of the intrusive rocks at Pogo, identifying rocks in hand sample proved problematic. By combining XRF analysis of the rocks' major and trace elements and age data from this and previous studies, I identified and differentiated several suites of igneous rocks. The oldest is peraluminous granite, emplaced at ~2.5 ± 0.5 kb at ~109-107 Ma, predating mineralization at 104 Ma at a pressure of 2.0 kb. Non-peraluminous granite is less common and of uncertain relationship to the peraluminous granite. Next, temporally, is a body named the Football pluton (and associated dike) of granodioritic to tonalitic composition, emplaced at 2.0 ± 0.5 kb at 103 ± 2 Ma. Not only indistinguishable from age and depth of mineralization, a dike of this body is present downdip underneath the Liese veins (main zone of mineralization), making it the most likely candidate for being the causative pluton for mineralization. The final mid-Cretaceous body is the Liese pluton (and associated dikes), of quartz diorite to tonalite. This forms a large body with E-W dikes cutting the Pogo mineralization and post-dating it at 95.4 ± 0.2 Ma, emplaced at a pressure of 1.0 kb. Thermobarometry and radiometric dating indicate a consistent uplift rate of about 0.6 mm/year during the mid-Cretaceous, 116 to 95 Ma. Initially an extensional event, subduction-related magmatism began at about 105 Ma. At the same time, the thrust faults were re-activated as low angle normal faults that apparently acted as pathways for the Liese mineralization.