• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Chemistry and Biochemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Metabolite influence on the hibernating Arctic ground squirrel

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rice_S_2020.pdf
    Size:
    9.466Mb
    Format:
    PDF
    Download
    Author
    Rice, Sarah A.
    Chair
    Drew, Kelly
    Committee
    Kuhn, Thomas
    Coker, Robert
    Ritter, Robert
    Keyword
    Arctic ground squirrel
    Hibernation
    Metabolism
    Metabolites
    Amino acids
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12417
    Abstract
    Hibernation is a state of extreme metabolic plasticity and fasting. How hibernators maintain nitrogen homeostasis and regulate amino acid metabolism and how those metabolites influence hibernation physiology remains unknown. We first utilized three approaches to understand nitrogen homeostasis and amino acid metabolism in hibernation: longitudinal metabolic profiling within individual animals over undisturbed torpor, in vivo amino acid isotope tracing in deep torpor, and ¹⁵N isotope tracing in vivo during arousal from hibernation in Arctic Ground Squirrels (AGS). We observed that in vivo whole body production (WBP) of metabolites in deep torpor are profoundly and selectively suppressed in deep torpor. Metabolic profiling over undisturbed torpor bouts shows amino acids with nitrogenous side chains accumulate over torpor while urea cycle intermediates remain unchanged. During arousal from hibernation, ¹⁵N isotope tracing demonstrates recycling of free nitrogen into non-essential amino acids, essential amino acids and the gamma-glutamyl system. We next utilized two approaches to understand potential metabolite influences on thermogenesis and behavior in hibernation: we infused ammonium acetate in deep torpor and fed diets high in omega 3 fatty acids and monitored body temperature and torpor bout length. We found high doses of a nitrogen donor, ammonium acetate, as well as diets high in omega 3 fatty acids both influence thermogenesis in hibernation. In conclusion, production of metabolites in deep torpor indicate highly regulated metabolism with accumulation of nitrogen carrying amino acids. We additionally show metabolites and nitrogen can exert thermogenic influence on hibernating AGS.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2020
    Table of Contents
    Introduction -- Chapter 1: Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown in hibernation -- Chapter 2: Ammonia increases thermogenesis in hibernation -- Chapter 3: Omega 3 fatty acid increases brown adipose tissue and core body temperature in the hibernating Arctic ground squirrel -- General Conclusion -- Appendices.
    Date
    2020-12
    Type
    Dissertation
    Collections
    Chemistry and Biochemistry

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.