• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Tracing carbon sources of southern Beaufort Sea and Chukchi Sea polar bears using stable isotope analyses

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Smith_M_2020.pdf
    Size:
    4.494Mb
    Format:
    PDF
    Download
    Author
    Smith, Malia E.K.
    Chair
    Horstmann, Lara
    Committee
    Wooller, Matthew
    Rode, Karyn
    Keyword
    Polar bear
    Beaufort Sea
    Chukchi Sea
    Stable isotopes in ecological research
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12419
    Abstract
    The Southern Beaufort Sea (SBS) polar bear (Ursus maritimus) subpopulation has declined in response to sea ice loss, while the Chukchi Sea (CS) subpopulation appears stable. The substantial population decline in the SBS subpopulation in recent years is concurrent with increases in the proportion of polar bears coming on shore, and the duration they spend there. Both of these changes have been associated with the loss of access to their primary sea ice habitat, which is mainly used as a platform to hunt seals. The first objective of this study was to determine if the SBS and CS polar bear subpopulations could be distinguished based on stable isotope signatures (delta¹³C and delta¹⁵N values) of bone collagen. The second objective was to examine patterns in SBS polar bear trophic level and terrestrial carbon sources over a 65-year time period, as polar bears have increasingly used coastal environments. We analyzed 112 SBS and CS polar bear bones (predominantly mandibles) from 1954-2019 that had been archived at the University of Alaska Museum of the North, as well as bones from subsistence-harvested polar bears. In addition to delta¹³C and delta¹⁵N, samples from the SBS bears were analyzed for compound-specific stable carbon isotopes of amino acids (delta¹³CAA values). Another 50 bone collagen samples from terrestrial mammals and pinnipeds from northern Alaska were analyzed for delta¹³CAA values to provide a regional comparative dataset. Our study showed a significant difference in bulk delta¹³C (p<0.001) values, but not delta¹⁵N (p=0.654) values between the CS (-13.0‰±0.3‰ and 22.0‰±0.9‰, respectively) and the SBS bears (-14.7‰±1.3‰ and 22.2‰±1.0‰, respectively). We performed a logistic regression analysis (LR) using bulk delta¹³C and delta¹⁵N values of the polar bears to predict their placement into these two subpopulations. Using Icy Cape, AK as the geographical boundary, LR correctly placed polar bears in their respective subpopulations 82% of the time. Overall accuracy of placement changed to 84% when using the current geographical boundary at Utqiaġvik, AK. Bone collagen has a slow turnover rate, providing long-term, potentially life-long stable isotope signatures. Our findings could be used to determine the association of harvested polar bears to Alaska subpopulations, thus aiding in harvest quota management. The LR predicted samples collected from the Wainwright, AK region to be 58% CS and 42% SBS polar bears. This indicates that the area between Wainwright and Icy Cape is a polar bear mixing zone that includes bears from both subpopulations. Over the 65-year study period, two distinct groups of SBS polar bears were identified based on their delta¹³C values of the amino acid proline: a high delta¹³CPro group (1.8‰±2.3‰, n=45) and a low delta¹³CPro group (-15.7‰±1.9‰, n=26). The high proline polar bear group had delta¹³CPro values similar to those of Arctic brown bears (Ursus arctos; 0.4‰±1.6‰), while the low group had delta¹³CPro values similar to ice seals (-15.3‰±1.2‰). Among the available samples, there were more high proline/pelagic bears (n=17) after the 2007 sea ice minimum than high proline/coastal bears (n=12), which is opposite of what we expected. This study provides evidence that two distinct ecotypes in Southern Beaufort Sea polar bears, pelagic and coastal, have existed since at least the 1950's. Overall, our results represent a detailed isotopic view of the Alaskan polar bear subpopulations, demonstrating the possibility of distinguishing and categorizing individuals as either SBS or CS, while also highlighting the existence of two ecotypes in the SBS subpopulation.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2020
    Table of Contents
    Chapter 1: General Introduction -- Chapter 2: Stable carbon and nitrogen isotope differences of polar bears in the Southern Beaufort Sea and Chukchi Sea -- Chapter 3: Compound-specific stable isotope analyses of amino acids provide evidence of two distinct ecotypes of Southern Beaufort Sea polar bears -- Chapter 4: General Conclusion -- Appendices.
    Date
    2020-12
    Type
    Thesis
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.