• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • New theses and dissertations
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • New theses and dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Neuroendocrine and glial cell remodeling in a hibernating mammal

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Duncan_C_2021.pdf
    Size:
    3.103Mb
    Format:
    PDF
    Download
    Author
    Duncan, Cassandra
    Chair
    Williams, Cory
    Committee
    O'Brien, Kristin
    Christian, Helen
    Keyword
    Arctic ground squirrel
    Hibernation
    Reproduction
    Neuroglia
    Paraneurons
    Photoperiodism
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12609
    Abstract
    In most seasonally breeding vertebrates, changes in photoperiod trigger the remodeling of neuroendocrine and glial cells known to be involved in activation of the reproductive axis. We used electron microscopy to determine whether similar remodeling occurs under conditions of continuous darkness during hibernation in arctic ground squirrels (Urocitellus parryii). Immediately prior to the reproductive season, arctic ground squirrels naturally sequester themselves in a persistently dark hibernacula for 6-8 months where they experience only muted fluctuations in ambient temperature. Hibernation consists of two to three week-long bouts of torpor, during which body temperature and metabolism are depressed, periodically interrupted by short (<24h) interbout arousals where animals become euthermic and metabolism returns to "normal" levels. Although their exact functions are unknown, interbout arousals are generally thought to be associated with homeostatic processes. With the exception of brief dynamic changes during interbout arousals, brain activity and neuroendocrine pathways are generally thought to be relatively static across hibernation. We hypothesized that interbout arousals may allow for cellular ultrastructural remodeling of pars tuberalis thyrotroph cells, hypothalamic tanycytes, and pars distalis gonadotroph cells across hibernation, allowing for animals to activate their reproductive axis in anticipation of the active season. To test this, we sampled brains from arctic ground squirrels during early, mid-, and late hibernation, as well as post hibernation. We found evidence for cellular remodeling and activation of the reproductive axis across hibernation including decreases in neuronal contacts with the hypothalamic basal lamina, increases in the cell area and decreases in granule density of pars distalis gonadotrophs, increases in gonadal mass, and upregulation of steroidogenic genes in gonadal tissue. We hypothesize that the return to euthermy during interbout arousals allows for remodeling of the hypothalamus and pituitary, which we tested by exposing male arctic ground squirrels to a warm ambient temperature (30°C) during midhibernation, which causes animals to prematurely end hibernation. However, the premature termination of hibernation resulted in limited ultrastructural changes, suggesting that temperature alone is insufficient to activate reproductive maturation. Altogether, our study reveals a previously underappreciated physiological dynamism during hibernation that allows animals to rapidly transition between seemingly incongruous life-history states.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2021
    Table of Contents
    General introduction -- Chapter 1: Neuroendocrine and gial cell remodeling in a hibernating mammal -- Chapter 2: Effects of mid-hibernation warming on neuroendocrine systems that control the reproductive axis -- General conclusion.
    Date
    2021-08
    Type
    Thesis
    Collections
    New theses and dissertations

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.