• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Searching the soil: characterizing the effects of disturbance on soil microbial communities and plant productivity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Seitz_T_2021.pdf
    Size:
    6.179Mb
    Format:
    PDF
    Download
    Author
    Seitz, Taylor J.
    Chair
    Drown, Devin M.
    Committee
    Mulder, Christa
    Briggs, Brandon
    Keyword
    Soil microbial ecology
    Permafrost
    Plant-microbe relationships
    Soil microbiology
    Useful plants
    Ecology
    Bog blueberry
    Vaccinium vitis-idaea
    Ledum groenlandicum
    Labrador tea
    Extreme environments
    Interior Alaska
    Show allShow less
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12631
    Abstract
    The effects of global climate change are accelerated and more pronounced in northern regions, and Alaska is at the forefront of that change. Permafrost, which underlies much of the Alaskan landscape, is rapidly thawing and degrading leading to shifts in hydrology, soil chemistry, and nutrient availability. As permafrost thaws, soil microbial communities have the potential to be influenced taxonomically and functionally. However, it is unclear how active layer microbial communities, which play a role in plant-microbe interactions, are affected by increasing soil disturbance, and how soil microbiomes can influence above ground plant communities. In this study, I aimed to understand how soil microbial communities from Interior Alaska are affected by increasing disturbance, and how they in turn drive the productivity of several plants found in boreal regions. Here I used a growth experiment and found that plant productivity was affected by the disturbance level of the microbial inoculant. Plants grown in soils inoculated with microbes associated with disturbed soils demonstrated significantly decreased productivity compared to plants inoculated with microbes from undisturbed soils. Through metagenomic sequencing, I observed broad scale shifts in community membership across the gradient of soil disturbance. I then continued to characterize the microbial communities used as inoculants in the greenhouse growth experiment through 16S rRNA amplicon sequencing. Microbial communities from disturbed soils were significantly more diverse than those from undisturbed soils, and the beta diversity of communities varied significantly based on the disturbance level. We found that within disturbance level community variation can be used to predict plant growth of bog blueberry, low-bush cranberry, and Labrador tea once the disturbance passes a threshold. These results suggest that as active layer microbial communities are affected by climate-driven soil disturbance, above ground plant communities may demonstrate decreased productivity, and consequently, decreased ecosystem health as the Arctic continues to warm.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2021
    Table of Contents
    Introduction -- Chapter 1: Soil disturbance affects plant productivity via soil microbial community shifts -- Chapter 2: Unearthing shifts in microbial communities across a soil disturbance gradient -- Overall conclusion -- Appendix.
    Date
    2021-08
    Type
    Thesis
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.