• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Physics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Determination of the diffusion coefficient for trimethylaluminum in the thermosphere at altitudes 120 to 180 km

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bhattacharya_T_2009.pdf
    Size:
    6.222Mb
    Format:
    PDF
    Download
    Author
    Bhattacharya, Tapas
    Keyword
    Thermosphere
    Thermospheric winds
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12833
    Abstract
    "The object of this work is to determine the diffusion coefficient (D) of trimethylaluminum (TMA) in the lower thermosphere as a function of altitude (h). This is done by measuring the dispersion of chemiluminescent TMA that is released in discrete quantities, or puffs, from sounding rockets at altitudes 120 to 180 km. Diffusing TMA, which glows in contact with atmospheric oxygen, is observed with stereoscopic ground-based imaging. Brightness profiles across a puff are found to be Gaussian in shape, with width parameter [sigma](t, h) that increases with age (t) of the puff leading to D = [sigma]² (t, h)/2t, independent of time, which is in good agreement with some past results. For example D = (2.5 ± 0.2) x 10³m²s⁻¹ at an altitude of 128 km for the state of the thermosphere at that time. A constant A links three altitude-dependent terms, the diffusion coefficient, temperature and density, at a particular location of the atmosphere, via D(h) = ATS (h)/n(h). It is determined from this study to be A=(4.42±0.05)x10¹⁸(m·s)⁻¹ for s = 0.75. Using these values for A and s, and temperatures and the densities determined from the MSIS-90 thermospheric model, diffusion coefficients for TMA can be determined at other locations and under different geomagnetic conditions"--Leaf iii
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2009
    Date
    2009-05
    Type
    Thesis
    Collections
    Physics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.