Ice thickness estimates of Lemon Creek Glacier, Alaska, from active-source seismic imaging
Author
Veitch, Stephen A.Karplus, Marianne
Kaip, Galen
Gonzalez, Lucia F.
Amundson, Jason M.
Bartholomaus, Timothy C.
Keyword
Glacier geophysicsglaciological instruments and methods
ice thickness measurements
mountain glaciers
seismology
Lemon Creek Glacier
temperate valley glacier
Metadata
Show full item recordAbstract
Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ∼50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (∼65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography.Date
2021-03-26Publisher
Cambridge University PressType
ArticlePeer-Reviewed
YesCitation
Veitch SA, Karplus M, Kaip G, Gonzalez LF, Amundson JM, Bartholomaus TC (2021). Ice thickness estimates of Lemon Creek Glacier, Alaska, from active-source seismic imaging. Journal of Glaciology 67(265), 824–832. https://doi.org/10.1017/jog.2021.32Collections
Related items
Showing items related by title, author, creator and subject.
-
Rock debris on glaciers: a mechanism for reducing glacier sensitivity to climate changeHerreid, Samuel (2012)Rock debris covering a glacier surface affects the local melt rate by regulating the amount of solar energy available for melting. Supraglacial debris with a thickness of about 2 cm or more insulates the ice, thereby reducing the heat flux. This reduction of melt rate allows heavily debris-covered glaciers to extend further down-valley than meteorological variables alone would suggest. Here we present a regional study of supraglacial debris cover in the Delta Mountains, a sub-range of the Alaska Range. Using remote sensing and in situ measurements we consider the following questions: -How does glacier and debris-covered area change from 1986 to 2010? -Can we estimate debris thickness remotely? -How does debris affect melt? -Will ice melt cease below two meters of debris? -Is there a correlation between geologic setting and debris cover?
-
Till deformation beneath Black Rapids Glacier, Alaska, and its implication on glacier motionTruffer, Martin; Harrison, W. D. (1999)The motion of a glacier is largely determined by the nature of its bed. The basal morphology and its reaction to the overlying ice mass have been subject to much speculation, because the glacier bed is usually difficult to access, and good field data are sparse. In spring 1997 a commercial wireline drill rig was set up on Black Rapids Glacier, Alaska, to extract cores of basal ice, subglacial till, and underlying bedrock. One of the boreholes was equipped with three tiltmeters to monitor till deformation, and a piezometer to record pore water pressure. The surface velocity and ice deformation in a borehole were also measured. The drill successfully reached bedrock twice after penetrating a till layer, some 5 to 7 m in thickness, confirming an earlier seismic interpretation. The till consisted of a sandy matrix containing clasts up to boulder size. Bedrock and till lithology indicated that all the drill holes were located to the north of the Denali Fault, a major tectonic boundary along which the glacier flows. The mean annual surface velocity of the glacier was 60 ma-1 , of which 20 to 30 ma-1 were ice deformation, leaving 30 to 40 ma-1 of basal motion. The majority of this basal motion occurred at a depth of more than 2 m in the till, contradicting previously held ideas about till deformation. Basal motion could occur as sliding of till over the underlying bedrock, or on a series of shear layers within the till. This finding has implications for the interpretation of the geologic record of former ice sheets, for geomorphology, and for glacier dynamics. The effect of a thick till layer on ice flow and on quantities observable at the glacier surface was calculated. These include velocity changes on secular, seasonal, and shorter time scales. A mechanism for uplift events and dye tracing responses was suggested. An easy surface observation that could serve to clearly distinguish a glacier underlain by till from the more traditional view of a glacier underlain by bedrock could not be identified.
-
The mass balance and the flow of a polythermal glacier, McCall Glacier, Brooks Range, AlaskaRabus, Bernhard Theodor; Echelmeyer, Keith (1997)Studies of surface motion and geometry, ice thickness, and mass balance were carried out on the arctic McCall Glacier. They revealed characteristic processes of glacier flow and mass balance that independently reflect the polythermal temperature regime of the glacier, which consists of cold ice except for a discontinuous layer of temperate ice at the base. Analysis of the present flow of McCall Glacier showed the longitudinal stress coupling length to be significantly larger than on temperate glaciers. This is a consequence of the smaller mass balance gradients and associated lower strain rates of arctic glaciers. Furthermore, flow analysis suggests year-round basal sliding beneath a section of the lower glacier, which accounts for more than 70% of the total motion. This sliding anomaly is reflected in corresponding anomalies of the observed ice thickness and surface profiles. Changes in surface velocity, both on a decadal and on a seasonal scale, were also studied. Velocities during the short summer season increase by up to 75% above winter values as a result of enhanced basal sliding at the temperate glacier bed. The zone affected by this speed-up extends upglacier of any obvious sources of meltwater input to the bed. The mass balance of McCall Glacier exhibits a trend towards increasingly negative values. This is shown by both annual measurements during 1969-72 and 1993-96 and by comparing long-term values for two periods, 1957-71 and 1972-93. The contribution of refreezing surface water in the cold surface layers of firn and ice (internal accumulation) to the net accumulation was found to increase from about 40% in the 1970s to more than 90% in the 1990s. Comparative studies of long-term volume changes of neighboring glaciers showed that the McCall Glacier mass balance is regionally representative. Existing good correlations of the mass balance with meteorological parameters recorded by a weather station more than 400 km to the east furthermore suggest that McCall Glacier is representative on a synoptic scale and thus is a valuable indicator of climate change in the Arctic.