• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Technical and economic evaluation of the first ever polymer flood field pilot to enhance the recovery of heavy oils on Alaska's North Slope via machine assisted reservoir simulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Keith_C_2022.pdf
    Size:
    8.302Mb
    Format:
    PDF
    Download
    Author
    Keith, Cody D.
    Chair
    Zhang, Yin
    Ahmadi, Mohabbat
    Committee
    Dandekar, Abhijit
    Keyword
    Polymer flooding
    Petroleum engineering
    North Slope
    Heavy oil
    Enhanced oil recovery
    Oil field flooding
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12938
    Abstract
    Polymer flooding has become globally established as a potential enhanced oil recovery method for heavy oils. To determine whether this technology may be useful in developing the substantial heavy oil resources on the Alaska North Slope, a polymer flood field pilot commenced at the Milne Point Unit in August 2018. This study seeks to evaluate the results of the field pilot on a technical and economic basis. A reservoir simulation model is constructed and calibrated to predict the oil recovery performance of the pilot through machine-assisted reservoir simulation techniques. To replicate the early water breakthrough observed during waterflooding, transmissibility contrasts are introduced into the simulation model, forcing viscous fingering effects. In the ensuing polymer flood, these transmissibility contrasts are reduced to replicate the restoration of injection conformance during polymer flooding. Transmissibility contrasts are later reinstated to replicate fracture overextension interpreted in one of the producing wells. The calibrated simulation models produced at each stage of the history matching process are used to forecast oil recovery. These forecasts are used as input for economic analysis, incremental to waterflooding expectations. The simulation forecasts indicate that polymer flooding significantly increases the heavy oil production for this field pilot compared to waterflooding alone, yielding attractive project economics. However, meaningful variations between simulation scenarios demonstrate that a simulation model is only valid for prediction if flow behavior in the reservoir remains consistent with that observed during the history matched period. Critically, this means that a simulation model calibrated for waterflooding may not fully capture the technical and economic benefits of an enhanced oil recovery process such as polymer flooding. Subsequently, the simulation model and economic model are used in conjunction to conduct a sensitivity analysis for polymer flood design parameters, from which recommendations are provided for both the continued operation of the current field pilot and future polymer flood designs. The results demonstrate that a higher polymer concentration can be injected due to the development of fractures in the reservoir. The throughput rate should remain high without exceeding operating constraints. A calculated point-forward polymer utilization parameter demonstrates the decreasing efficiency of the polymer flood at later times in the pattern life. Future projects will benefit from starting polymer injection earlier in the pattern life. A pattern with tighter horizontal well spacing will observe a greater incremental benefit from polymer flooding.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2022
    Table of Contents
    Chapter 1. Introduction -- Chapter 2. Technical evaluation of polymer flood pilot via reservoir simulation -- Chapter 3. Economic evaluation of polymer flood field pilot -- Chapter 4. Conclusions and recommendations.
    Date
    2022-05
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.