• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Novel applications of remote sensing and GIS in mass wasting hazard assessments for two fjords of South-Central Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Balazs_M_2021.pdf
    Size:
    24.98Mb
    Format:
    PDF
    Download
    Author
    Balazs, Matthew S.
    Chair
    Prakash, Anupma
    Wolken, Gabriel
    Committee
    Meyer, Franz
    Darrow, Margaret
    Keyword
    Fjords
    Southcentral Alaska
    Remote sensing
    Landslides
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/12989
    Abstract
    The fjords of South-Central Alaska are dynamic environments and host to a number of natural hazards that have not received much attention from the research community. The cities of Seward and Whittier are two of Alaska's most important marine transportation hubs, home to commercial fishing fleets, termini of the Alaska Railroad, and home to thousands of residents. This doctoral research focuses on landslides and their associated hazards in these under-studied areas. Chapter 2 involves surficial mapping of the study areas and documents the role of the underlying geologic processes that threaten the safety of people and infrastructure in the Passage Canal-Portage Valley area (including the town of Whittier), to better inform community planning, mitigation, and emergency response activities. Chapter 3 builds on the successes and lessons learned from the mapping efforts made in Chapter 2. A surficial geology and landslide inventory map were made using very high resolution orthoimagery, DEMs, and 3D models which were viewed in an immersive Virtual Reality (iVR) system. Chapter 4 examines the hazards associated with large amounts of sediment entering the alluvial fan system from further upslope. A collection of six Digital Elevation Models (DEMs) and meteorological data collected over a ten-year period were used to estimate flood-related sedimentation. Uncertainties in each DEM were accounted for, and a DEMs of Difference (DoD) technique was used to quantify the amount and pattern of sediment introduced, redistributed, or exiting the system. The study shows that the DoD method and using multiple technologies to create DEMs is effective in quantifying the volumetric change and general spatial patterns of sediment redistribution between the acquisition of DEMs. Correlations of the changes in sediment budget with rainfall data and flood events were made. During the years of average rainfall, the reaches in the corridor experienced an overall decrease in sediment load, while heavy rainfall events both saw large influx of new sediment and the reworking of existing sediment. This research is the first to collect and use high resolution data for generating digital elevation models, for using a DoD method for mapping elevation changes over time, and for using these products along with available ancillary data for a hazard assessment in these regions. This doctoral work lays out a solid foundation for further work in hazard assessment that will also guide decision-makers in the future on mitigation measures in these important population centers in south central Alaska.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2021
    Table of Contents
    Chapter 1: General introduction. Chapter 2: Inventory and preliminary assessment of geologic hazards in the passage Canal-Portage Valley area, South-Central Alaska. Chapter 3: Improving surficial geology and mass wasting hazard mapping with virtual reality. Chapter 4: Quantifying debris flood deposits in an Alaskan fjord using multitemporal digital elevation models. Chapter 4: Conclusions. Appendices.
    Date
    2021-12
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.