Control problems for the wave and telegrapher's equations on metric graphs
Author
Alam, Gazi MahmudChair
Avdonin, Sergei A.Committee
Rhodes, John A.Rybkin, Alexei
Avdonina, Nina
Keyword
Differential equationsInverse problems
Wave equation
Linear differential equations
Partial differential equations
Quantum graphs
Metadata
Show full item recordAbstract
The dissertation focuses on control problems for the wave and telegrapher's equations on metric graphs. In the first part, an algorithm is constructed to solve the exact control problems on finite intervals. The algorithm is implemented numerically to solve the exact control problems on finite intervals. Moreover, we developed numerical algorithms for the solution of control problems on metric graphs based on the recent boundary controllability results of wave equations on metric graphs. We presented numerical solutions to shape control problems on quantum graphs. Specifically, we presented the results of numerical experiments involving a three-star graph. Our second part deals with the forward and control problems for the telegrapher's equations on metric graphs. We consider the forward problem on general graphs and develop an algorithm that solves equations with variable resistance, conductance, constant inductance, and constant capacitance. An algorithm is developed to solve the voltage and current control problems on a finite interval for constant inductance and capacitance, and variable resistance and conductance. Numerical results are also presented for this case. Finally, we consider the control problems for the telegrapher's equations on metric graphs. The control problem is considered on tree graphs, i.e. graphs without cycles, with some restrictions on the coefficients. Specifically, we consider equations with constant coefficients that do not depend on the edge. We obtained the necessary and sufficient conditions of the exact controllability and indicate the minimal control time.Description
Dissertation (Ph.D.) University of Alaska Fairbanks, 2022Table of Contents
Chapter 1: General introduction -- Chapter 2: Control problems for the wave equation on metric graphs -- Chapter 3: Forward problems for the telegrapher's equations on metric graphs -- Chapter 4: Control problems for the telegrapher's equations on metric graphs -- Chapter 5: Conclusions -- References.Date
2022-05Type
DissertationCollections
Related items
Showing items related by title, author, creator and subject.
-
Aboveground Biomass Equations for the Trees of Interior AlaskaYarie, John; Kane, Evan; Mack, Michelle (School of Agriculture and Land Resources Management, Agricultural and Forestry Experiment Station, 2007-01)Calculation of forest biomass requires the use of equations that relate the mass of a tree or it's components to physical measurements that are relatively easy to obtain. In the literature individual tree relationships have been reported that estimate aboveground biomass on individual sites (e.g. Barney and Van Cleve 1973)and over large landscape areas where many data sets are combined (Jenkins et al. 2003). The equations presented in this report represent a compilation of aboveground biomass data collected within interior Alaska over the past 40 years.
-
Symbolic stability of delay differential equationsAverina, Victoria (2002-08)We offer a new symbolic computation of stability boundaries for linear systems of time-periodic delay differential equations with the period being equal to the delay. We construct an approximation of the 'infinite-dimensional Floquet transition matrix' U using the variation of parameters method, Picard iteration, and Chebyshev approximation techniques. A 'Mathematica' program approximately computes 'U'. We show the stability boundaries of well-known examples of delay differential equations in mathematics and mechanics.
-
A Personal Computer Solution to the Modified Berggren EquationBraley, W. Alan (1984-12)