• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Biology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Benthic carbon demand and community structure across the Pacific Arctic continental shelves

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Charrier_B_2022.pdf
    Size:
    8.102Mb
    Format:
    PDF
    Download
    Author
    Charrier, Brittany Robinson
    Chair
    Mincks, Sarah
    Committee
    Danielson, Seth
    Ingels, Jeroen
    Kelly, Amanda
    Thurber, Andrew
    Keyword
    Polychaeta
    Ecology
    Bering Sea
    Chukchi Sea
    Marine benthic ecology
    Benthic animals
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/13008
    Abstract
    High latitude continental shelves are experiencing rapid environmental change. The Pacific Arctic, which includes the northern Bering and southern Chukchi Sea continental shelves, is undergoing warming temperatures, reductions in sea ice, and changes to the marine ecosystem. Fieldwork was conducted across the northern Bering and southern Chukchi Sea continental shelves in June 2017 and June 2018 on the R/V Sikuliaq. The overall objective of this dissertation was to characterize benthic community structure, function, and carbon demand in the Pacific Arctic to serve as baselines for assessing impacts of environmental change. Spatial patterns of macrofauna and meiofauna were characterized, including abundances, biomass, composition, and vertical distribution within the sediment. Polychaete structure and function were assessed in detail by identifying polychaetes to family level and assigning each a functional guild based on feeding mode, motility, and feeding structures. Nematodes were identified to genus level and characterized by feeding type and life-history strategy. Clusters of polychaete functional guilds and nematode genera assemblages were similar and occupied different general regions within the Pacific Arctic: northern Bering Sea, Bering Strait, offshore Chukchi Sea, and coastal Chukchi Sea. These polychaete and nematode assemblages were associated with different depositional and food environments, characterized by grain size and the amount and quality of sediment organic matter. In addition, metabolic and carbon demand of dominant macrofaunal were estimated based on oxygen consumption rates. Species-specific rates suggest that shifts in macrofaunal community composition in the region will impact benthic carbon demand. Overall, the research presented here provides critical baseline data for benthic community structure, function, and carbon demand in the Pacific Arctic and can be used to evaluate change and constrain region-specific ecosystem models, especially in the context of a rapidly changing environment.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2022
    Table of Contents
    General introduction -- Linking polychaete functional traits and benthic ecosystem function to habitat characteristics on a shallow Arctic shelf -- Meiofaunal community structure in Pacific Arctic shelf sediments : a comparison of meiofaunal- and macrofaunal-sized nematodes and functional traits -- Changes to benthic community structure may impact organic matter consumption on Pacific Arctic shelves -- General conclusion.
    Date
    2022-04
    Type
    Dissertation
    Collections
    Marine Biology

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.