• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Fisheries
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Marine debris in the Bering Sea: combining historical records, toxicology, and local knowledge to assess impacts and identify solutions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Padula_V_2022.pdf
    Size:
    7.135Mb
    Format:
    PDF
    Download
    Author
    Padula, Veronica M.
    Chair
    Beaudreau, Anne
    Causey, Douglas
    Committee
    McDonnell, Andrew
    Konar, Brenda
    Hollmen, Tuula
    Keyword
    Marine debris
    Bering Sea
    Aleutian Islands
    Plastic marine debris
    Environment
    Phthalate esters
    Toxicology
    Sea birds
    Pollution
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/13014
    Abstract
    Marine debris, particularly plastic marine debris, has numerous impacts on the environment, wildlife, and human communities. This research examines dimensions of marine debris in the Bering Sea and Aleutian Islands, Alaska, including impacts of marine debris pollution on wildlife and the environment; the history of marine debris research, monitoring, and cleanup activities; and community perspectives on local to global solutions. The first chapter of this dissertation is an integrative literature review to better understand the current status of marine debris knowledge in the Bering Sea region and identify critical knowledge gaps. We synthesized the depth and breadth of research, monitoring, and cleanup activities to better understand the sources, prevalence, and impacts of marine debris on wildlife and coastal communities. Our review revealed several knowledge gaps, including two that were a focus of the final chapters of the dissertation: measuring the extent of plastic-associated contaminants in the Bering Sea and capturing community perspectives and concerns about marine debris in the Bering Sea. The second chapter examined variation in phthalates, a class of plastic-associated chemicals, in Aleutian Islands seabirds, to refine hypotheses regarding ecological and environmental factors that affect phthalate exposure in marine wildlife. We quantified phthalates in seabirds collected across >1700 km of the Aleutian Islands, Alaska, and measured six phthalate congeners in seabirds representing ten species and four feeding guilds. Phthalates were detected in 100% of specimens (n = 115) but varied among individuals (range 3.64 - 539.64 ng/g). Total phthalates did not vary geographically, but differed among feeding guilds, with significantly higher concentrations in diving plankton-feeders compared to others. Our findings suggest feeding behavior could influence exposure risk for seabirds and lend further evidence to the ubiquity of plastic pollutants in marine ecosystems. The final chapter of the dissertation explored perspectives and concerns of St. Paul Island community members regarding marine debris and plastic pollution. This component of the research aimed to catalyze the inclusion of local knowledge in marine debris solutions for St. Paul Island, Alaska, by documenting community members' perceptions of marine debris, including its origin, impacts, and proposed solutions. We interviewed thirty-six St. Paul Island community members from 2017 to 2020 about the types, amount, distribution, and impacts of marine debris they have observed on the island and its surrounding waters over recent decades. Research participants reported increases in plastic debris since the 1980s, particularly plastic bottles. Nearly 80% expressed concern about impacts to subsistence resources, including entanglement and ingestion of plastic particles by marine mammals and fishes. St. Paul Island community members' experiences highlight that solving the problem of marine debris cannot rely on local efforts alone but requires broader policies and mitigation strategies to address the sources of debris and advance environmental justice for coastal communities. Overall, this dissertation contributes an improved understanding of the social and ecological impacts of plastic pollution in the Bering Sea region and the potential science and policy solutions that can stem the tide of marine debris.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2022
    Table of Contents
    Chapter 1: General introduction -- Chapter 2: A review of marine debris impacts and multi-scale solutions to plastic pollution in Bering Sea social-ecological systems -- Chapter 3: Plastic-derived contaminants in Aleutian Archipelago seabirds with varied foraging strategies -- Chapter 4: Including coastal community voices in the marine debris conversation: Perspectives from St. Paul Island, Alaska -- Chapter 5: General conclusion -- Appendices.
    Date
    2022-05
    Type
    Dissertation
    Collections
    Fisheries

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.