Recent Submissions

  • Lagrangian surface drifter analyses from observations and numerical modeling in the subpolar North Atlantic

    Klenz, Thilo; Simmons, Harper L.; Lilly, Jonathan M.; Danielson, Seth; Johnson, Mark A.; Hennon, Gwenn (2023-05)
    Lagrangian surface drifters are powerful tools to study the dynamics of the ocean across a variety of spatial and temporal scales, ranging from regional to global and monthly to climatological, respectively. This dissertation investigates the utility of Lagrangian surface drifters for estimating the mechanical input of energy into the ocean by the atmosphere, and for gathering information about the underlying dynamics driving oceanic variability. The basis for the analysis was a large dataset of 88 surface drifters deployed in the subpolar North Atlantic between 2018 and 2019. In addition, numerical drifters from both idealized and realistic ocean models were used to supplement the observations. The study region is characterized by pronounced mesoscale eddy activity and, due to its proximity to the North Atlantic storm track, strong atmospheric storms causing energetic near-inertial oscillations. It is hence well-suited for the analyses presented here. We introduced a novel surface drifter instrument, the Minimet, that measures sea surface wind in situ along the drifter track. Estimates of in situ Minimet wind power input were found to be over 40% higher than those using a reanalysis wind product. This discrepancy was likely due to Minimets accurately capturing strong high-frequency wind events that were misrepresented in the reanalysis product, highlighting the utility of the Minimets for both wind power input calculations and the important validation of gridded wind products. We currently lack a basic understanding of the Lagrangian velocity frequency spectrum and how it relates to the underlying dynamics. We therefore investigated the Lagrangian spectral shape and found significant variability linked to eddy kinetic energy. Lastly, we established a direct link between the Lagrangian velocity frequency spectrum and Eulerian kinetic energy wavenumber spectrum. This link had not previously been made from single particles and together with a better understanding of the Lagrangian frequency spectrum furthers our ability to efficiently utilize Lagrangian data.
  • Shifts in microbial community composition during the 2019 Pacific marine heatwave in the northern Gulf of Alaska

    Cohen, Jacob; Hennon, Gwenn; Aguilar-Islas, Ana; Leigh, Mary Beth (2022-12)
    Climate change has led to a gradual increase of sea surface temperatures in the Northern Gulf of Alaska (NGA) interspersed with marine heatwaves (MHW) that impose a rapid but temporary perturbation of sea surface temperature. MHWs have the potential to alter marine microbial community structure, which may impact the production and transfer of carbon to higher trophic levels. The year 2019 was characterized as an MHW in the North Pacific, with sea surface temperatures in the NGA reaching ~2.5 º C above average during 2019 and ~1 º C above average during 2020, while 2021 had near-average sea surface temperatures. To characterize shifts in the NGA's microbial community, samples for DNA and flow cytometry were collected on NGA Long Term Ecological Research cruises in summers 2018-2021. Flow cytometry sample analysis revealed higher abundances of picoeukaryotes, Synechococcus, and nanoeukaryotes in the summer of 2019 relative to 2020 and 2021 on the continental shelf. The diversity of eukaryotic microbes was lower during 2018-19 than 2020-2021, with similar patterns observed within the diversity of individual eukaryotic taxa. Conversely, the diversity of prokaryotic microbes was higher during 2019 than 2020. Different environmental conditions were correlated with small cell abundance and microbial diversity. Elevated picoeukaryote abundance was associated with higher temperature and inversely correlated with chlorophyll a concentration, while Synechococcus abundance was anti-correlated with the concentration of nitrate and phosphate. Shannon diversity of 18S reads correlated with lower salinity measurements while Shannon diversity of 16S reads was not significantly correlated with any tested biological or environmental variables. These correlations indicate that increases in sea surface temperature, along with associated changes in nutrient concentrations and salinity, act as environmental drivers with the potential to shifts the NGA's microbial community structure. Such a community shift towards pico-nanophytoplankton may reduce trophic transfer efficiency and decrease the production of fisheries and other higher trophic levels in a warmer NGA.
  • The impact of submarine groundwater discharge on nutrient dynamics in a sub-polar mudflat

    Haag, Josianne; Kelley, Amanda; Aguilar-Islas, Ana; Munk, LeeAnn; Johnson, Mark (2022-08)
    Submarine groundwater discharge (SGD) plays a major role in the hydrological and biogeochemical cycles controlling nearshore nutrient availability. The Northern Gulf of Alaska coastline is highly diverse, ranging from rocky beaches, sandy beaches, and mudflats; SGD varies according to sediment permeability, strength of wave pumping, and slope of the water table. SGD has been previously estimated at a rocky beach in the NGA, but this thesis sought to quantity SGD in an extensive mudflat using well-established tracers (radium and radon) and determine the major sources of nutrients to the bay. The rate of SGD was comparable between the mudflat and rocky beach (233 ± 245 and 260 ± 360 cm day⁻¹, respectively), and both locations were significant sources of nitrate and silicic acid, and sinks of phosphate. Offshore water also provides a major input of nitrate and phosphate to the bay. Thus, there is no single dominant source for all macronutrients, consequently, multiple processes must be considered when predicting nutrient cycling.
  • Acoustic detection and characterization of sea ice and surface waves in the northeast Chukchi Sea

    Sandy, Savannah J.; Danielson, Seth; Iken, Katrin; Mahoney, Andy; Simmons, Harper (2022-05)
    Monitoring the status of Arctic marine ecosystems is aided by oceanographic moorings that autonomously collect data year-round. Near Hanna Shoal in the northeast Chukchi Sea, the Chukchi Ecosystem Observatory moorings include an ASL Environmental Sciences Acoustic Zooplankton Fish Profiler (AZFP) datalogger, a multi-frequency upward-looking sonar that is programmed to collect data from across the upper 30 m of the water column every 10-20 seconds. Using six years of nearly continuous data, here we describe a statistical analysis of the datalogger's 455 kHz acoustic backscatter return signal. When used in conjunction with a selforganizing map machine learning algorithm, these data allow us to accurately differentiate between the presence of sea ice and open water and characterize surface waves. The approach detects short-duration (e.g., 15 minutes or longer) sea ice leads that pass over the mooring in winter, and sparse ice floes that pass over in summer. The ability to algorithmically identify small-scale features within the information-dense acoustic dataset enables rich characterizations of sea ice conditions and the ocean surface wave environment. Example applications include quantifying the recurrence of leads during ice-covered seasons, sparse ice in otherwise open water, statistics of ice keels and level ice, and wave height statistics. By automating the acoustic data processing and alleviating labor- and time-intensive analyses, we can maximize the use of these year-round acoustic data. Beyond applications to newly produced datasets, the approach opens possibilities for the efficient extraction of new information from existing upward-looking sonar records from recent decades.
  • Lipid accumulation in three species of Neocalanus copepod in the northern Gulf of Alaska

    Coleman, Delaney M.; Hopcroft, Russell; Danielson, Seth; Hennon, Gwenn (2022-05)
    The Northern Gulf of Alaska experiences pronounced seasonality and inter-annual variability characterized by a significant bloom of phytoplankton in the spring. Neocalanus copepods in the NGA have evolved to match their lifecycle to the seasonality of the Gulf of Alaska and feed upon the spring phytoplankton bloom. All three of these Neocalanus species utilize diapause as an over-wintering strategy; acquiring large stores of lipid to sustain them through winter hibernation and subsequent reproduction. Zooplankton were sampled with 150 and 505 µm mesh nets from 0 to 1200 m along the Seward Line and within Prince William Sound in the Northern Gulf of Alaska during 2018-2020 to track the physiological process of Neocalanus copepods preparing for diapause. We measured lipid sac area, lipid volume and percent lipid to quantify lipid content. Neocalanus showed significant interannual variability in final lipid accumulation both at depth and in the surface during the study period. For all three species, lipid content increased with increasing stage and prosome length. Lipid content increased from spring to summer for N. flemingeri, remaining steady into fall as animals molted into adults and descended to depth for diapause. Neocalanus plumcrhus stored lipid from spring to summer before descending slightly after N. flemingeri. Neocalanus cristatus exhibited dissimilar behavior to the other two species, storing consistently low amounts of lipid, alluding to a different lifecycle. Each Neocalanus species displayed similar lipid accumulation behavior with offset timing from one another. Neocalanus exhibits an earlier developmental timing as compared to other lipid accumulating copepods giving them a competitive advantage to reach maturity in time to feed on the early phase of the spring phytoplankton bloom faster than other species. Our data provided some evidence for both the lipid accumulation hypothesis and the developmental program hypothesis being utilized in Neocalanus populations in the Northern Gulf of Alaska. This work serves as the first detailed study of body condition and lipid sac condition in Neocalanus populations throughout the water column within the Northern Gulf of Alaska.
  • Investigation of variability of internal tides in the Tasman Sea

    Brazhnikov, Dmitry; Simmons, Harper; Kowalik, Zygmunt; Johnson, Mark; Marchenko, Alexey; Horrillo, Juan J. (2021-05)
    Surface tides, when obstructed by bottom relief, give rise to periodic oscillations within the stratified oceanic interior. Such transformation of the depth independent (barotropic) tide into internally propagating (baroclinic) waves comprises 1/3 of the global energy losses from the surface tide. Internal waves of tidal period known as internal tides tend to have low vertical shear and hence are very stable and long lived. They have been observed to propagate essentially unchanged across ocean basins. Details of the internal tide wave life-cycle are not well known, yet turbulent dissipation powered by the slow decay of these waves is one of the key processes shaping deep ocean water properties. The Tasman Sea stands out as a natural laboratory to investigate the internal tide life cycle. In this dissertation, the generation and propagation of internal tides were examined by means of realistic simulations of ocean circulation under varying conditions, and were compared to observations obtained during the Tasman Tidal Dissipation Experiment (TTIDE). The simulations reveal that the barotropic-to-baroclinic conversion is intensified at the Macquarie Ridge near New Zealand by coupling with secondary, nonlocally produced internal tides. Because of this complexity, regionally varying hydrographic conditions drive remarkable temporal and spatial variability of internal tide generation. The internal tides that are created at the ridge constructively superpose into a spatially confined, beam-like feature (Tasman beam) that radiates across the Tasman Sea over 1000 kilometers from its generation region and reaches the Tasman shelf. The beam is described well at first order by simple plane wave propagation theory, but also exhibits non-plane wave characteristics associated with diffraction. Additional intricacy arises from development of a standing wave, the result of the beam's reflection near Tasmania. Temporal changes include hydrography-induced refraction and strong perturbations from interactions with eddies. It is concluded that in-situ mooring measurements and ship surveys of internal tides exhibit a great deal of apparent spatial and temporal variability that can be difficult to interpret. This variability can largely be eliminated in the analysis of numerical models which allow the underlying wave field energy life cycle to be quantified.
  • Utility of trace element studies for improving our understanding of geochemical processes within the arctic ocean environment

    Bolt, Channing; Aguilar-Islas, Ana; Rember, Robert; Reynolds, Jennifer; Rivera-Duarte, Ignacio; Simmons, Harper (2021-05)
    The Arctic Ocean is a dynamic region undergoing rapid change. Sea ice and meteoric water are intrinsic components of the Arctic environment that play key roles in its ecosystem, including the distributions and cycling of trace elements throughout the pan-Arctic Ocean. Meteoric water (e.g., rivers and snow deposition) contributes to the input of trace elements to surface waters, while sea ice dynamics contribute to the transport of these constituents across Arctic basins. Trace element distributions can provide insights into Arctic processes. The focus of Chapter One is on particulate (>0.2 μm) trace elements in Arctic pack ice, associated snow, and underlying surface waters collected from September-October 2015 during the US GEOTRACES Western Arctic cruise (GN01). This late-season pack ice provides a snapshot of sea ice characteristics in regions near the North Pole, within the Makarov and Canada Basins, and can estimate the impact melting sea ice may have on particulate trace element inputs to Arctic waters. Chapter Two presents on the utility of dissolved barium (dBa), a bio-intermediate element of lithogenic origin, as a tracer of meteoric water throughout the Siberian Arctic Ocean. Samples for Chapter Two were collected during the 2018 Nansen and Amundsen Basin Observatory System. The distribution of dBa in this region may provide useful insights into important shelf processes, such as tracing shelf waters along continental slopes. In Chapter 3, additional spatiotemporal geochemical parameters (δ¹⁸O and salinity) are considered alongside dBa to model how Arctic water mass fractions (meteoric, sea ice melt, and Atlantic waters) changed between 2013, 2015, and 2018 within the Siberian Arctic Ocean. This dissertation contributes to the understanding of Arctic Ocean processes through the application of trace element studies and highlights the usefulness of combining tracers to better understand this dynamic environment.
  • Spatial and temporal variability of dissolved aluminum and manganese in surface waters of the northern Gulf of Alaska

    Kandel, Anna R.Y.; Aguilar-Islas, Ana; Danielson, Seth; Hennon, Gwenn (2020-12)
    The Northern Gulf of Alaska (NGA) shelf is a productive high-latitude environment where nutrient dynamics are greatly impacted by the seasonal variability in freshwater input and water column mixing. Iron is a key nutrient on the NGA shelf that directly modulates primary production, but inputs are difficult to quantify due to high biological uptake and control exerted by Fe-binding organic ligands. Other lithogenic elements such as aluminum and manganese have the same sources as iron (rivers and sediment) and similar abiotic removal via particle scavenging, but exhibit quasi- conservative behavior in seawater allowing for their use as tracers of these sources. Thus, Al and Mn distributions can help provide insight into iron inputs and the relative importance of various mechanisms influencing nutrient dynamics in the NGA. The data are derived from spring, summer, and fall NGA LTER (long term ecological research) cruises from 2018 and 2019 that included a focused five-day Copper River plume study, several surface transects from Kayak Island to Kodiak Island, and vertical profiles at several locations sparsely distributed throughout the shelf. We find that seasonal patterns in the surface concentrations of dMn and dAl mirrored annual glacial melt cycles, with the lowest values observed in spring and higher values in summer and fall. Spatial patterns were also apparent as both metals tended to be lower offshore than inshore, and were also lower overall (by 1-2 orders of magnitude) on transects further from the outflow of the Copper River, a major source of freshwater to the NGA. Extremely high concentrations in the Copper River plume (≤1395 nM dAl, ≤128 nM dMn) and strong correlations with salinity (p < 0.0001) highlight their quasi-conservative nature, and their usefulness as tracers of freshwater input, which helps inform iron inputs from this source. Enhanced dAl and dMn concentrations within nepheloid layers in subsurface waters indicate regions where a sedimentary source of iron is likely to be important. Residence times for dAl and dMn in surface waters over the NGA shelf were estimated to be 31 days (dAl) and 42 days (dMn) on average based on summer and fall data from both years.
  • Genomic signatures of optimal growth temperature in the family Colwelliaceae

    Gentilhomme, Anais; Collins, R. Eric; Hennon, Gwenn M.M.; Leigh, Mary-Beth; Drown, Devin (2020-12)
    The temperature range supporting growth defines a complex physiological phenotype that depends on interactions between an organism's genome and its environment. Its implications are widespread since small changes in optimal growth temperature (OGT) can alter an organism's ability to inhabit an ecological niche. Thus, organisms with extreme thermal growth traits (e.g., psychrophilic, with OGT < 15℃, or thermophilic, with OGT 60 -80℃) may be useful for identifying promising targets when searching for life on other planets, as well as predicting population dynamics in a warming Arctic. We performed comparative genomic analyses of bacteria newly isolated from Arctic sea ice that were affiliated with Colwelliaceae, a family of Gammaproteobacteria that contains many psychrophilic strains, to identify genomic factors that might be used to predict OGT. A phylogenomic analysis of 67 public and 39 newly-sequenced strains, was used to construct an updated phylogenetic tree of Colwelliaceae, of which at least two genera were well represented. To augment the previously reported OGTs of 26 strains, we measured growth rates at −1, 4, 11, and 17 ℃ to determine the OGTs of these 39 new strains of Colwelliaceae. We found that growth rates among all isolates were comparable at −1℃, but varied widely above 10 ℃, indicating higher variability in the ability to tolerate warmer temperatures. To analyze the phenotypic differences on a genomic level, we examined indices of amino acid substitutions that have previously been linked with cold adaptation via an increase in protein flexibility. We found that these indices were significantly correlated with OGT at the whole genome level, although the sign of some correlations were opposite of the predicted positive correlation between temperature and the indices. Using these data, we fit a multiple linear regression model for OGT within the Colwelliaceae family that incorporates the three most informative amino acid indices: GRAVY, Aliphatic Index, and Acidic Residue Proportion. Additionally, a putative cold-adaptive gene cassette was identified that was likely introduced by horizontal gene transfer between two closely related clades with different OGTs. These contributions offer key insights into OGT variability and its underlying genomic foundation in the family Colwelliaceae.
  • Growth and reproductive rates of calanoid copepods in the northern Bering and southern Chukchi Seas

    Poje, Alexandra; Hopcroft, Russ; Coyle, Kenneth; Danielson, Seth (2020-08)
    Egg production and copepodite growth rates were measured for the calanoid copepods Pseudocalanus spp., Calanus marshallae/glacialis, and Metridia pacifica in the northern Bering and southern Chukchi Seas during June of 2017 and 2018. For all taxa, instantaneous growth rates generally decreased with increasing copepodite stage, though the differences between most stages was not significant. The growth rates for Pseudocalanus spp. averaged 0.03 ± 0.002 day⁻¹, Calanus spp. 0.09 ± 0.004 day⁻¹, and M. pacifica 0.05 ± 0.03 day⁻¹. Egg production rates increased with prosome length for all species, but when standardized to body weight this trend reversed. All Pseudocalanus species had similar weight-specific egg production (SEP): 0.18 ± 0.01 for P. acuspes, 0.15 ± 0.00 for P. newmani, and 0.11 ± 0.02 for P. minutus. The SEP for Calanus was considerably lower, 0.09 ± 0.01, while for M. pacifica it was 0.11 ± 0.01. These rates suggest considerable discrepancies between growth rates and egg production weights that we propose are due to differences in life history strategies. Pseudocalanus reproduce nearly year round, they appear to invest less in somatic growth, preferring to quickly reach their adult stage where they invest heavily into reproduction. Calanus spp. have 1 or possibly 2 generations per year in this region, they invest more into somatic growth in order to ensure their population is ready for a reproductive season timed to the spring phytoplankton bloom. The more omnivorous M. pacifica is also likely limited to 1 or 2 generations, although their ability to thrive on a wider range of food sources than Calanus seems to allow for relatively higher investment in reproduction and perhaps lower investment in somatic growth. Consistent with other studies, global growth models do not match our observations particularly well, likely because they are dominated by egg production estimates at lower latitudes.
  • Abundance, composition and distribution of predatory gelatinous zooplankton in the northern Gulf of Alaska

    Mendoza Islas, Heidi M.; Hopcroft, Russell R.; Coyle, Kenneth O.; Cieciel, Kristin; Danielson, Seth (2020-08)
    Jellyfish are conspicuous yet under-studied components of marine zooplankton communities. Abundance, biomass, size, and distribution of large-jellyfish were measured during July and September of 2018 and 2019 as part of the Northern Gulf of Alaska Long-Term Ecological Research (NGA-LTER) cruises. Nearly 1000 kg dispersed among ~13,800 jellies were collected using a 5 m² Methot net. Catches were dominated by two macro-jellies, the hydrozoan Aequorea sp. and the scyphozoan Chrysaora sp. During 2018, epipelagic macro-jellies biomass averaged 1.46 ± 0.36 g WW m⁻³ for July and 1.14 ± 0.23 g WW m⁻³ for September, while during 2019 they averaged 0.86 ± 0.19 g WW m⁻³ for July and 0.72 ± 0.21 g WW m⁻³ by September. Despite similar biomass among sampling seasons within the same year, July abundances were fivefold greater than abundances in September, with July catches dominated by juvenile jellyfish over the inner shelf, while during September jellyfish adults were more prominent and most predominant at offshore stations. Comparison to over 20 years of data from standard towed nets allowed determination of the relative magnitude of the three dominant predatory zooplankton components: Scyphozoans, Hydrozoans, and Chaetognaths in the NGA. The biomass of these smaller epipelagic predators (10 mg WW m⁻³ for hydrozoans and 8 mg WW m⁻³ for chaetognaths) is a low percentage of the macro-jellies, despite their much higher numerical abundance. Acknowledging that changes in gelatinous biomass could have profound effects on fisheries, we argue that jellyfish should be quantitatively monitored in ecosystems with high fisheries productivity.
  • Pacific herring juvenile winter survival and recruitment in Prince William Sound

    Sewall, Fletcher; Norcross, Brenda; Mueter, Franz; Kruse, Gordon; Heintz, Ron; Hopcroft, Russ (2020-05)
    Small pelagic fish abundances can vary widely over space and time making them difficult to forecast, partially due to large changes in the number of individuals that annually recruit to the spawning population. Recruitment fluctuations are largely driven by variable early life stage survival, particularly through the first winter for cold temperate fishes. Winter survival may be influenced by juvenile fish size, energy stores, and other factors that are often poorly documented, which may hamper understanding recruitment processes for economically and ecologically important marine species. The goal of this research was to improve understanding of recruitment of Pacific herring (Clupea pallasii) within Prince William Sound (PWS) through recruitment modeling and by identifying factors influencing winter survival of young-of-the-year (YOY) herring. Towards this end, my dissertation addresses three specific objectives: 1) incorporate oceanographic and biological variables into a herring recruitment model, 2) describe patterns in growth and condition of PWS YOY herring and their relationship to winter mortality risks, and 3) compare the growth, condition, swimming performance, and mortality of YOY herring that experience different winter feeding levels. In the recruitment modeling study, annual mean numbers of PWS herring recruits-per-spawner were positively correlated with YOY walleye pollock (Gadus chalcogrammus) abundance in the Gulf of Alaska, hence including a YOY pollock index within a standard Ricker model improved herring recruitment estimates. Synchrony of juvenile herring and pollock survival persisted through the three-decade study period, including the herring stock collapse in the early 1990s. While the specific mechanism determining survival is speculative, size-based tradeoffs in growth and energy storage in PWS YOY herring indicated herring must reach a critical size before winter, presumably to reduce size-dependent predation. Large herring switched from growth to storing energy, and ate more high-quality euphausiid prey, which would delay the depletion of lipid stores that compelled lean herring to forage. Lipid stores were highest in the coldest year of the seven-year field study, rather than the year with the best diets. With diets controlled in a laboratory setting, spring re-feeding following restricted winter diets promoted maintenance of size and swimming ability, but had little effect on mortality rates compared to fish continued on restricted rations. Declines in gut mass, even among fully fed herring, and low growth potential suggest limited benefits to winter feeding. Mortalities due to food restriction compounded by disease were highest among herring that fasted through winter months, and among small herring regardless of feeding level. Taken together, these findings illustrate the importance of achieving a critical size and high lipid stores in the critical period before winter to promote YOY herring winter survival and ultimately recruitment.
  • Diversity and community structure of eukaryotic phototrophs in the Bering and Chukchi seas

    Lekanoff, Rachel M.; Collins, R. Eric; McDonnell, Andrew M.P.; Danielson, Seth L. (2020-05)
    The phytoplankton of the Bering and Chukchi seas support highly productive ecosystems characterized by tight benthic-pelagic coupling. In this study, we focus on the northern Bering and Chukchi seas, considering them as one ecosystem. This community has historically been dominated by diatoms; however, climate change and accompanying warming ocean temperatures may alter primary producer communities. Using metabarcoding, we present the first synoptic, high-throughput molecular phylogenetic investigation of phytoplankton diversity in the Bering and Chukchi seas based on hundreds of samples collected from June to September in 2017. We identify the major and minor taxonomic groups of diatoms and picophytoplankton, relative abundances of genera, exact sequence variants (201 for diatoms and 227 for picophytoplankton), and describe their biogeography. These phylogenetic insights and environmental data are used to characterize preferred temperature ranges, offering insight into which specific phytoplankton (Chaetoceros, Pseudo−nitzschia, Micromonas, Phaeocystis) may be most affected as the region warms. Finally, we investigated the likelihood of using shipboard CTD data alone as predictive variables for which members of phytoplankton communities may be present. We found that the suite of environmental data collected from a shipboard CTD is a poor predictor of community composition, explaining only 12.6% of variability within diatom genera and 14.2% variability within picophytoplankton genera. Clustering these communities by similarity of samples did improve predictability (43.6% for diatoms and 32.5% for picophytoplankton). However, our analyses succeeded in identifying temperature as a key driver for certain taxa found commonly throughout the region, offering a key insight into which common phytoplankton community members may be affected first as the Alaskan Arctic continues to warm.
  • Carbon flux and particle-associated microbial remineralization rates in the northern Bering and southern Chukchi seas

    O'Daly, Stephanie Hicks; McDonnell, Andrew M. P.; Hardy, Sarah M.; Johnson, Mark A. (2019-12)
    It has been hypothesized that climate change will reduce the strength and episodic nature of vernal phytoplankton blooms, increase heterotrophy of microbes and zooplankton, and weaken the tight coupling between pelagic and benthic production that is characteristic of Arctic continental shelves. As a part of the Arctic Shelf Growth, Advection, Respiration, and Deposition rates measurement (ASGARD) project, I quantified sinking particle fluxes and incubated sinking particles to measure the rate of microbial respiration associated with those particles. These measurements were used to characterize the strength of the pelagic-benthic connection. After a record-breaking year of warm temperatures and low-ice conditions in the northern Bering and southern Chukchi Seas, we observed massive vernal fluxes of sinking particulate organic carbon, ranking amongst the highest observed in the global oceans. Moreover, low rates of particle-associated microbial respiration indicate negligible recycling of sinking organic matter within the water column. These results suggest that the strength of the biological carbon pump may be maintained or enhanced in a warming Arctic, supporting strong benthic and upper trophic level productivity and carbon export.
  • Numerical investigations of the hydrography, dynamics, and ice distributions of Chukchi Sea shelf

    Lu, Kofan; Danielson, Seth; Weingartner, Thomas; Hedstrom, Kate; Shimada, Koji; Winsor, Peter (2019-08)
    Warm, moderately salty Bering Sea Water (BSW) carried into the Chukchi Sea through Bering Strait provides an oceanic heat flux for melting sea ice comparable to that of the solar heat flux. Intrusions of BSW transport heat and nutrients via intrapycnocline eddies vertically beneath the sea ice and laterally across structural fronts near the ice edge, setting up hydrographic features important to ice edge communities and the seasonal evolution of the ice melt-back. However, the intrapycnocline eddy dynamics and associated hydrography near the fronts have not previously been well described or characterized. Three numerical models using the Regional Ocean Model System (ROMS) are integrated to systematically investigate the importance of the intrapycnocline eddy field and the factors that affect its dynamics. The models suggest that the heat transported by eddies depends on frontal stratification, which is influenced primarily by the Bering Strait inflow discharge and salinity. The eddy field is also indirectly modified by the sea surface height, which varies with strong winds. Two frontal zones near the ice edge are identified according to the model-derived hydrographic structures and eddy dynamics: the Shelf Water Transition Zone (SWTZ) and the Melt Water Transition Zone (MWTZ). Improved understanding of these frontal zones will benefit future research of the ice edge ecosystem. Our models show a noticeable effect of strong wind events on ice edge displacement and vertical transports, both of which may be important to primary production in the frontal zones. Changing winds associated with increasing sea surface temperatures could alter the manifestation of the processes highlighted in this study.
  • Particles in the Pacific: how productivity and zooplankton relate to particles in the deep sea

    Pretty, Jessica L.; McDonnell, Andrew; Johnson, Mark; Hopcroft, Russ (2019-05)
    The magnitude and spatio-temporal patterns of particulate material flux from the surface ocean through mesopelagic and bathypelagic depths determines sequestration of atmospheric carbon and the food supplied to deep-dwelling ocean life. The factors that influence how and where this organic material is exported from euphotic depths are poorly understood. Zooplankton are thought to play a key role in modulating the transport of surface-produced particles to depths through consumption, fragmentation, active diel vertical migration, and fecal pellet production, thus it is important to study both particulate matter and zooplankton in tandem. In this study, I use an in-situ optical instrument, the Underwater Video Profiler 5 (UVP5), to describe broad scale patterns of large (> 100 μm) particles and zooplankton across a longitudinal transect of the Pacific Ocean during April to June 2015. Satellite-derived surface chlorophyll-a was employed to describe the timescales over which particles arrive in meso- and bathypelagic depths after a productivity peak. High abundances and volumes of particles are noticeable beyond the euphotic zone across the Equator, transition zone, and the sub-arctic Pacific, indicating increased export in these high-nutrient low-chlorophyll (HNLC) areas. In two of these areas, the Equator and transition zone, large abundances and volumes of particles extend into bathypelagic depths. High abundances of zooplankton were seen in all areas where high abundances of particles are seen in bathypelagic waters. Rhizaria were revealed to be pervasive across all biogeographic regions, and appear to play a role in particle attenuation in the sub-arctic Pacific. The insight into patterns between particles, zooplankton, and productivity identify HNLC regions as deserving more detailed examination in future studies of biological pump efficiency.
  • St. Lawrence Island polynya: Ice circulation and dense water production

    Glueck, Mary Frances Milkovich; Weingartner, Thomas J. (1999)
    The St. Lawrence Island polynya (SLIP) opens every winter off the coast of St. Lawrence Island as winds move ice away from the shore. The SLIP is an important site for production of the dense water that flows northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter 1991/1992 ERS-1 SAR, thermal infrared, and passive microwave imagery are analyzed in combination with regional climate system and analytical simulations to investigate SLIP ice circulation, heat fluxes, and dense water production. Emphasis is on the February 1992 southern SLIP event. Satellite-based measurements show this polynya extended ~165km offshore and ~100km along shore at maximum extent. ERS-1 SAR GPS-derived ice motion indicated maximum ice speeds of ~30km day -1 during polynya expansion. Ice along the polynya boundary drifted parallel to the wind at 3--4% of the wind speed during north/northeasterly winds >7m s-1 Heat fluxes associated with the SLIP varied depending on method of calculation, but indicated increasing trends during polynya development. Associated ice production rates of 4.218.9cm day-1 were computed via different models. Dense water production, derived from ice production rates and polynya size, ranged from 0.011--0.017Sv, suggesting that the SLIP could account for 19--27% of the Bering Sea's contribution and 1--2% of the total Arctic contribution to Arctic Ocean halocline maintenance. Although the regional climate system model generated the SLIP on the same time scales as observed, a larger polynya resulted. The simulated polynya's heat and moisture impact was observed to at least 800mb, reaching 50km downstream. During periods of sustained winds, ice circulation was similar to that observed. Incorporation of a "barotropic" ocean component suggested that ocean circulation may be an important ice circulation forcing mechanism at the SLIP, especially during periods of weak winds, as inclusion greatly improved the simulated ice circulation. The "barotropic" ocean also improved polynya shape and extent. If regional climate changes alter the existence of polynyas like the SLIP, changes in the Arctic Ocean halocline might occur. Additional in situ observations and better fully-coupled atmosphere-ice-ocean models are needed to further ascertain the impact of polynyas on the overall Arctic climate system.
  • Circulation variability in the Bering Sea

    Okkonen, Stephen Richard; Niebauer, H. J. (1993)
    Sea surface height anomalies measured by the GEOSAT radar to develop an improved circulation scheme for the deep basin of the Bering Sea and to make inferences about the dynamics controlling the circulation. A conceptual model of the circulation in the Bering Sea is presented in three manuscripts. The first provides a description of a large eddy in the Alaskan Stream. This eddy is shown to influence circulation in the southern Aleutian Basin. The second manuscript reports on an empirical orthogonal function analysis of averaged sea surface height anomalies. The analysis is interpreted to describe the superposition of two principal circulation schemes. The former describes annual period, basin scale cyclonic circulation. The latter scheme reflects the southwestward propagation of $\sim$1.9 year period, gyre scale baroclinic long waves across the Aleutian Basin. The final paper reports on observations of topographic planetary waves associated with the Bering Slope Current. The model provides a possible resolution of some of the discrepancies between previously published circulation schemes for the Bering Sea.
  • Numerical modeling study of the circulation of the Greenland Sea

    Masłowski, Wiesław (19941994)
    This study is a simulation of the circulation of the Greenland Sea aimed at modeling some of the issues related to the Great Salinity Anomaly (GSA) and deep water formation using a primitive equation ocean general circulation model (Semtner, 1974). The features of the model include: (1) a high resolution, (2) real topography, (3) open boundaries at the south and north, and (4) temporally variable wind and thermohaline forcing. The model is used to study: (1) the spreading of a fresh water anomaly, (2) the mechanisms of cross frontal mixing that lead to deep water formation, (3) the general circulation of the deep and upper layers of the ocean and their dependence on wind and thermohaline forcing, and (4) the possible implications of meso-scale and large-scale variability on climate change. One of the major results of this work is the simulation of continental shelf waves propagating along the shelf slope of Greenland between 77$\sp\circ$N and 72$\sp\circ$N. Waves with a subinertial period of 17.2 hrs, a wavelength of 363 km, a phase speed of 586 cm/s and a group velocity of 409 cm/s, are found. Possible mechanism for generation of shelf waves is presented. It is suggested that some energy related with wave activity may support cross-frontal mixing in the East Greenland Current (EGC), where formation of the two main sources of North Atlantic Deep Water (e.g. Norwegian Sea Deep Water and Denmark Strait Overflow Water) have been reported. The results from the GSA simulation suggest that during the early stage of the GSA (e.g. during its propagation with the EGC to the south, in the late 1960s) when no observations are available, the fresh water signal is not being mixed into the interior circulation of the Greenland Sea gyre. The second experiment, representing recirculation of the GSA from the North Atlantic back into the Greenland Sea, in the late 1970s, shows freshening in the Greenland Sea gyre of comparable magnitudes ($-$0.05 to $-$0.1 psu) to the observed ones. These results agree with the earlier indirect measurements (Rhein, 1991; Schlosser et al., 1991) indicating dramatic reduction of deep water renewal in the Greenland Sea in the late 1970s and early 1980s. From the general circulation experiments it has been found that the ocean response to seasonal forcing is mainly barotropic. This implies a strong topographic control in the distribution of currents and hydrographic variables. Most of the areas of topographic steering which are simulated in the region have been reported in the literature. The so-called Molloy Deep eddy shows its direct dependence on the large scale dynamics affecting the northward flow of the West Spitsbergen Current (WSC), controlling this way a net mass transport into the Arctic Ocean. Simulations with different wind forcing suggest dependence of the Greenland Sea gyre circulation on the variations with time of the local wind forcing. Results indicate that monthly mean wind stress forcing probably underestimate wind forcing in the model. Analysis of surface, intermediate and deep ocean velocity fields compare reasonably well with observations.
  • On the dynamics of the Alaska coastal current

    Luick, John Leonard; Royer, Thomas C. (1988)
    The Alaska Coastal Current (ACC) in the northern Gulf of Alaska is a wind- and buoyancy-driven near-surface jet primarily maintained by the horizontal salinity gradient due to fresh water entering at the coast. It serves as the major source of fresh water to the North Pacific Ocean. The buoyancy driving force is the major focus of this investigation. The study area is situated just "downstream" of Prince William Sound (PWS), a large estuary whose surface outflow is seen to occupy a narrow inshore band after joining the ACC. The effect of this band appears to be the formation of an occasional double maximum in the ACC. The period focused on in this study was selected on the basis of weak windstress but large fresh water input in order to emphasize the buoyancy forcing. The TS characteristics and a water mass tracing technique are used to separate the thermal and haline signals in the buoyancy forcing and to track the origin and fate of the source waters of the study area. The buoyancy driving force is shown to be primarily haline, with temperature playing a secondary, moderating role. Because of the large topographic variability and sloping density interfaces, and in order to exploit the available data, a diagnostic model retaining the baroclinicity and bottom topography terms was chosen to study the dynamics. Model premises are verified by results from hydrographic surveys, moored current meters, and a profiling current meter. The model predicts a midshelf region of negligible sealevel gradient, with a nearshore ($\approx$70 km wide) band over which the sealevel changes by about 25 cm. The sloping surface drives a strong ($\approx$100 cm/s) surface flow, which decreases to zero and reverses below about 100 m due to the opposing baroclinic pressure gradient. The flow splits around a shoal region. The onshore portion joins the outflow from PWS and accelerates downstream forming a double maximum. The offshore segment forms a large meander before rejoining the rest of the ACC, advecting midshelf water shoreward. The momentum balance is dominated by the JEBAT terms, which primarily determine the flow along and across contours of f/H.

View more