• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Exploring the evolution of fishes at high latitudes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Rix_A_2022.pdf
    Embargo:
    2023-12-09
    Size:
    10.51Mb
    Format:
    PDF
    Download
    Author
    Rix, Anna S.
    Chair
    Wolf, Diana
    López, J. Andrés
    Committee
    Podlutsky, Andrej
    Stecyk, Jonathan
    Takebayashi, Naoki
    Keyword
    Fishes
    Genetics
    Lake trout
    Evolution
    Arctic regions
    Alaska
    Canada
    Adaptation
    Ecology
    Nototheniidae
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/13128
    Abstract
    Fish species found in high latitude waters are especially vulnerable to climatic changes due to their inability to regulate body temperature and long evolution in cold, oxygen-rich aquatic environments. Antarctic notothenioid fishes have evolved to thrive in an extremely stable, cold, oxygen-rich environment. Likewise, lake trout live in a cold, oxygen-rich environment, but commonly experience a wider range of temperatures than notothenioids. Millions of years of evolution in the cold have shaped the genetics of these fishes, but the effects on their biology remain largely unexplored. This dissertation seeks to learn from the past evolution of these two evolutionarily distant types of high latitude fishes to enhance predictions for how these animals can cope with future environmental changes. Specifically, this dissertation examines the genetics of fishes with limited thermal tolerance from the population level down to a single gene. These studies relied on DNA sequence evidence produced with two different technologies and analyzed under functional, phylogenetic, and population genetic frameworks. In the first study, mitochondrial DNA (mtDNA) variation is examined to determine ancestral affinities and geographic distribution of mtDNA variants in lake trout across Alaska. Lake trout in Alaska descend from two distinct mtDNA lineages. One mtDNA lineage is restricted to Arctic Alaska, north of the Brooks Range, while the other lineage is found across Alaska. Lake trout likely dispersed from glacial refugia in western Canada to recolonize Alaska and the movement patterns from recolonization assist in determining how lake trout are likely to move across the landscape in the future. In the second study, genome wide genetic diversity of lake trout in seven Alaskan lakes is explored to determine ancestral affinities and colonization pathways. Despite past movement, the lake trout population currently found in each of the sampled lakes is genetically distinct from all other sampled populations and no migration currently seems to be occurring, even between lakes less than 20 km from each other. This research shows lake trout in Alaska are genetically diverse, but with little gene flow, genetic rescue and transfer of genetic variation between populations is unlikely to occur. In the third component of this dissertation, the evolution of the critical hypoxia transcription factor is examined in Antarctic notothenioids. The hypoxia-inducible factor-1alpha (HIF-1alpha) of Antarctic notothenioids contains a polyglutamine/glutamic acid insert that may impact the function of this key transcription factor. Thus, Antarctic notothenioids may have difficulties in responding to climate change induced hypoxia. Overall, the adaptive consequences of evolution in high latitude aquatic environments may be detrimental to fishes as they face climate changes. Other high latitude freshwater fishes like lake trout may have limited gene flow among populations, reducing potential for adaptation and genetic rescue in response to climate change. More research into the evolution and functional implications of different natural genetic variants is needed to protect these unique high latitude species.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2022
    Table of Contents
    Chapter 1 - General introduction -- Chapter 2 - Revisiting the phylogeography of lake trout (Salvelinus namaycush) in Alaska -- Chapter 3 - Population genetic structure of lake trout from three river drainages in interior and southcentral Alaska -- Chapter 4 - Hypoxia-Inducible Factor-1a in Antarctic notothenioids contains a polyglutamine and glutamic acid insert that varies in length with phylogeny -- Chapter 5 - General conclusions.
    Date
    2022-12
    Type
    Dissertation
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.