We will be upgrading the ScholarWorks@UA repository! A content freeze will be in effect starting November 11th. No new submissions will be accepted; however, content already published will remain publicly available. Logins for non-admins will be disabled until the migration is complete.
Name:
Alvey_2023_Climate Futures_Cla ...
Embargo:
2024-11-07
Size:
406.5Kb
Format:
PDF
Description:
This is an Accepted Manuscript ...
Author
Alvey, ElaineKeyword
climate changeeco-anxiety
climate resilience
climate futures
carbon ruins
climate impacts
geographic education
Metadata
Show full item recordAbstract
Given the realities currently at hand, it is easy to imagine the worst-case scenario climate futures, to become paralyzed by climate grief or to disengage all together. Inspired by pedagogical engagements with imagination and drawing on foundational geography skills, this three-day mini-unit invites secondary students to first analyze localized impacts of climate change, and then look to examples of positive climate futures before finally imagining for their own community’s resilient climate future.Table of Contents
Introduction -- Connecting to Geographic Education -- Learning Goals -- Target Audience -- Lesson 1: Exploring Local Impacts -- Lesson 2: Exploring Imagination & Carbon Ruins -- Lesson 3: Imagining in Place -- Conclusion -- References.Date
2023-11-07Publisher
Taylor & FrancisType
ArticlePeer-Reviewed
YesCitation
Alvey, E. (2023). Climate Futures: Classroom Engagements for Imagining Otherwise. The Geography Teacher, 20(3), 132-135. https://doi.org/10.1080/19338341.2023.2265389Collections
Related items
Showing items related by title, author, creator and subject.
-
Emerging climate-driven disturbance processes: Widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened coniferBuma, Brian; Hennon, Paul E; Harrington, Constance A.; Popkin, Jamie R.; Krapek, John; Lamb, Melinda S.; Oakes, Lauren E.; Saunders, Sari; Zeglen, Stefan (John Wiley & Sons, 2016-10-29)Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow–rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow–rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow–rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (< 2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1–9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management.
-
Assessing River Ice Breakup Date, Coastal Tundra Vegetation And Climate Divisions In The Context Of Alaska Climate VariabilityBieniek, Peter A.; Bhatt, Uma (2012)In Alaska, there exists a substantial knowledge gap of key climate drivers and filling these gaps is vital since life and the economy are inexorably linked with climate in the state. This thesis identifies and investigates three topics that advance the understanding of Alaska climate variability: the role of large-scale climate in Interior river ice breakup, the link between climate and arctic tundra vegetation, and climate divisions based on objective methods. River ice breakup in the Yukon-Kuskoswim watershed is occurring earlier by 1.3 days decade-1 1948-2008 and displays large year-to-year variability. April-May Interior Alaska air temperatures are the best predictor of river ice breakup and were linked to El Nino Southern Oscillation (ENSO). During the warm phase of ENSO, fewer storms track into the Gulf of Alaska during Boreal Spring, resulting in reduced April-May cloudiness over Alaska, increased solar insolation at the land surface, warmer air temperatures and consequently earlier breakup. Northern Alaska tundra vegetation productivity has increased 1982-2011, based on the Normalized Difference Vegetation Index (NDVI), a satellite measure of vegetation correlated with above ground biomass. Vegetation productivity was linked to the Beaufort High circulation as well as snowfall, in addition to land surface temperatures and coastal sea ice extent. NDVI has decreased from 1982-2011 over the coastal tundra along the Bering Sea and was correlated with delayed springtime warming due to enhanced coastal sea ice and a delayed snowmelt. Cluster analysis was applied to 2-meter air temperature data 1977-2010 at meteorological stations to construct climate divisions for Alaska. Stations were grouped together objectively based on similar homogeneous seasonal and annual climate variability and were refined using local expert knowledge to ultimately identify 13 divisions. Correlation analysis using gridded downscaled temperature and precipitation data validated the final division lines and documented that each division has similar a similar annual cycle in temperature and precipitation. Overall, this work documented substantial links and identified mechanisms joining the large-scale climate to that of Alaska. A better understanding of the role of large-scale climate variability in river ice breakup or tundra greening holds promise for developing seasonal and longer-term forecasts.
-
Tree-ring derived avalanche frequency and climate associations in a high-latitude, maritime climatePeitzsch, Erich H.; Hood, Eran; Harley, John R.; Stahle, D. K.; Kichas, Nickolas E.; Wolken, Gabriel (American Geophysical Union, 2023-07-28)Snow avalanches are a natural hazard in mountainous areas worldwide with severe impacts that include fatalities, damage to infrastructure, disruption to commerce, and landscape disturbance. Understanding long-term avalanche frequency patterns, and associated climate and weather influences, improves our understanding of how climate change may affect avalanche activity. We used dendrochronological techniques to evaluate the historical frequency of large magnitude avalanches (LMAs) in the high-latitude climate of southeast Alaska, United States. We collected 434 cross sections throughout six avalanche paths near Juneau, Alaska. This resulted in 2706 identified avalanche growth disturbances between 1720 and 2018, which allowed us to reconstruct 82 years with LMA activity across three sub-regions. By combining this tree-ring-derived avalanche data set with a suite of climate and atmospheric variables and applying a generalized linear model to fit a binomial regression, we found that February and March precipitation and the Oceanic Niño Index (ONI) were significant predictors of LMA activity in the study area. Specifically, LMA activity occurred during winters with substantial February and March precipitation and neutral or negative (cold) ONI values, while years not characterized by LMAs occur more frequently during warm winters (positive ONI values). Our examination of the climate-avalanche relationship in southeast Alaska sheds light on important climate variables and physical processes associated with LMA years. These results can be used to inform long-term infrastructure planning and avalanche mitigation operations in an urban area, such as Juneau, where critical infrastructure is subject to substantial avalanche hazard.