Data for "Using Machine Learning, the Cloud, Big Data, Citizen-science, and 200+ environmental predictors towards proposing modern add-ons to improve conservation management plans for squirrel species in Alaska"
Name:
Appendix2.1a_AK600KmBufferGBIF ...
Size:
128.7Mb
Format:
Microsoft Excel 2007
Description:
Appendix2.1a_AK600KmBufferGBIF ...
Name:
Appendix2.1b_AK600KmBufferGBIF ...
Size:
6.194Mb
Format:
Unknown
Description:
Appendix2.1b_AK600KmBufferGBIF ...
Name:
Appendix2.2_GlobalEnvPredictor ...
Size:
6.784Gb
Format:
Unknown
Description:
Appendix2.2_GlobalEnvPredictor ...
Name:
Appendix2.3_AKPredInLattice200 ...
Size:
956.7Mb
Format:
Unknown
Description:
Appendix2.3_AKPredInLattice200 ...
Name:
Appendix2.4_GlaucomysSabrinusW ...
Size:
2.101Kb
Format:
Unknown
Description:
Appendix2.4_GlaucomysSabrinusW ...
Name:
Appendix2.5a_GEOTiffsSpeciesSp ...
Size:
16.84Mb
Format:
Unknown
Description:
Appendix2.5a_GEOTiffsSpeciesSp ...
Name:
Appendix2.5b_VariableImportanc ...
Size:
209.6Kb
Format:
Unknown
Description:
Appendix2.5b_VariableImportanc ...
Name:
Appendix2.6a_MeEn200P6Sp11.tif
Size:
2.782Mb
Format:
TIFF image
Description:
Appendix2.6a_MeEn200P6Sp11.tif
Name:
Appendix2.6b_MeEn200P12Sp7.tif
Size:
5.555Mb
Format:
TIFF image
Description:
Appendix2.6b_MeEn200P12Sp7.tif
Name:
Appendix2.7_ValidatedMetadata.zip
Size:
124.0Kb
Format:
Unknown
Description:
Appendix2.7_ValidatedMetadata.zip
Keyword
Alaska Native landsCART
Cloud computing
Conservation Management Plans
Ensemble Super Species Distribution Models
Machine Learning
Maxent
Random Forest
Squirrels
TreeNet


