• A Magneto-Ionic Theory of the Aurora

      Reid, G. C. (Geophysical Institute at the University of Alaska, 1958-12)
      A qualitative description of the development of a typical auroral display as the result of an electrical discharge in the ionosphere is presented. The prime cause of the discharge is taken as the potential difference existing between points in the interplanetary medium as a result of an interaction between charged particles of solar origin and the earth's magnetic field. The characteristics of the occasional very intense aurorae visible over large areas of the earth are discussed, as well as the normal diurnal and seasonal variation of auroral occurrence. The origin of the electric field is discussed, and a possible explanation in terms of particles trapped in the earth’s magnetic field, is presented.
    • Radiation Information from 1958 δ2

      Basler, R. P.; DeWitt, R. N.; Reid, G. C. (Geophysical Institute at the University of Alaska, 1960-01)
      The telemetered radiation information from the satellite 1958 δ2 (Sputnik III) has been analyzed for sixty-two separate passes recorded in College, Alaska. The data indicate a dependence of radiation intensity on altitude in the range 250-500 km. Both the high and low energy components apparently contribute to the overall increase of intensity with altitude, but the presence of a continuous afterglow in the scintillating crystal prevented detailed interpretation of the results.
    • Radio Properties of the Auroral ionosphere, Supplement to Final Report (Phase I)

      Reid, G. C.; Stiltner, E. (Geophysical Institute at the University of Alaska, 1960-02-01)
      The usefulness of the phase-sweep technique in interferometers designed to record radio star signals is discussed. Interferometers of this type have been built for use at frequencies of 223 and 456 Mcs., and their electronic design is explained in some detail. The report also includes a discussion of the automatic data processing system which has been designed to operate in conjunction with the interferometers in the analysis of the amplitude scintillation of radio stars.