• Ice Fog: Low Temperature Air Pollution; Defined with Fairbanks, Alaska as type locality

      Benson, Carl S. (Geophysical Institute at the University of Alaska, 1965-11)
      Stable pressure systems over interior Alaska sometimes produce prolonged, extreme (below -40°C) cold spells at the surface. The meteorological conditions responsible for two such cold spells are discussed in detail in Appendix A, where it is shown that the rate of radiative cooling of the air is enhanced by suspended ice crystals which are themselves a result of the initial cooling. Radiation fogs formed during the onset of cold spells are generally of short duration because the air soon becomes desiccated. These fogs consist of supercooled water droplets until the air temperature goes below the "spontaneous freezing point” for water droplets (about -40°C); the fog then becomes an ice crystal fog, or simply "Ice Fog". During the cooling cycle water is gradually condensed out of the air until the droplets freeze. At this point there is a sharp, discontinuous decrease in the saturation vapor pressure of the air because it must be reckoned over ice rather than over water. The polluted air over Fairbanks allows droplets to begin freezing at the relatively high temperature of -35°C. Between -35 and -40°C the amount of water vapor condensed by freezing of supercooled water droplets is 3 to 5 times greater than the amount condensed by 1°C of cooling at these temperatures. This results in rapid and widespread formation of ice fog (Appendix B) which persists in the Fairbanks area as long as the cold spell lasts. The persistence of Fairbanks ice fog depends on a continual source of moisture (4.. 1 x 10^6 Kg H2O per day) from human activities within the fog. Ice fog crystals are an order of magnitude smaller than diamond dust, or cirrus cloud crystals, which in turn are an order of magnitude smaller than common snow crystals (0.01, 0.1 and 1 to 5-mm respectively). The differences in size are shown to result from differences in cooling rates over 5 orders of magnitude. Most of the ice fog crystals have settling rates which are slower than the upward velocity of air over the city center. The upward air movement is caused by convection cells driven by the 6°C "heat island" over Fairbanks. This causes a reduced precipitation rate which permits the density of ice fog in the city center to be three times greater than that in the outlying areas. The inversions which occur during cold spells over Fairbanks begin at ground level and are among the strongest and most persistent in the world. They are three times stronger than those in the inversion layer over Los Angeles. Thus, the low-lying air over Fairbanks stagnates and becomes effectively decoupled from the atmosphere above, permitting high concentrations of all pollutants. The combustion of fuel oil, gasoline, and coal provides daily inputs of: 4.1 x 10^6 kg CO2 ; 8.6 x 10^3 kg SO2 ; and 60, 46 and 20 kg of Pb, Br and Cl respectively, into a lens-like layer of air resting on the surface with a total volume less than 3 x 10^9 m^3. The air pollution over Fairbanks during cold spells couldn't be worse, because the mechanisms for cleaning the air are virtually eliminated while all activities which pollute the air are increased.
    • Incidence of Auroras and Their North-South Motions in the Northern Auroral Zone

      Davis, T. Neil; Kimball, Donald S. (Geophysical Institute at the University of Alaska, 1960-01)
      Studies of the incidence of auroral forms and their north and south motions are made by using a close-spaced array of all-sky cameras located in the northern auroral zone at the approximate geomagnetic longitude 250°E. It is found that during the observing season 1957-58 the peak of the average auroral zone occurred at 66-67° geomagnetic latitude. Although the southern extent of auroras retreats northward after local magnetic midnight, the southward motion of the individual forms, observed at the southern edge of the auroral zone, predominates over the northward motion throughout most of the night. The data indicate the existence on any given night of a latitude position near which many auroral forms occur. The first motion of auroras incident north of this position tends to be northward, and the first motion of auroras incident south of this position tends to be southward. A curve showing the occurrence of auroral forms peaks at, and is nearly symmetrical about, local geographic midnight, but the intensity of auroral emissions measured over the celestial hemisphere remains at a high level after midnight.
    • Indices of Upper Atmospheric Disturbance Phenomena in Auroral Zone

      Elvey, C. T.; Sugiura, M. (Geophysical Institute at the University of Alaska, 1958-12)
      The earlier orbits and ephemerides for the Soviet satellites were not sufficiently accurate to be very useful in making observations in Alaska. Extrapolations from our own observations gave better predictions. This merely pointed out the fact that rough observations of meridian transits at high latitudes will give better values of the inclination of the orbit than precision observations at low latitudes. Hence, it was decided to observe visually the meridian transits estimating the altitude by noting the position with respect to the stars or using crude alidade measurements. The times of the earlier observations were observed on a watch or clock and the clock correction obtained from WWV. Later the times were determined with the aid of stop watches, taking time intervals from WWV signals. This rather meager program of optical observations of the Soviet satellites was undertaken to give supplementary data for use of the radio observations, and particularly to assist in the prediction of position of the satellite so that the 61-foot radar of Stanford Research Institute could be set accurately enough to observe it (the beam width at the half-power points is about 3°). This report contains primarily the visual observations made at the Geophysical Institute by various members of the staff, and a series of observations by Olaf Halverson at Nome, Alaska. In addition there is a short discussion of the geometry of the trajectory, the illumination of a circumpolar satellite, and a note on the evaluation of Brouwer's moment factors.
    • An Investigation of Whistlers and Chorus at High Latitudes

      Pope, J. H. (Geophysical Institute at the University of Alaska, 1959-04)
      The whistlers and chorus received at College, Alaska during the period from December 1955 through March 1958 are studied particularly with respect to temporal variations. The diurnal curves for whistler activity show maxima after midnight local time while the seasonal variation peaks during the winter. It appears that these variations in whistler activity are in part explainable in terms of very low frequency propagation conditions. The diurnal variation of chorus shows a maximum at about 1400 hours local time. By the use of data from lower latitude stations a dependence of this time of diurnal maximum on the geomagnetic latitude of the station is shown. The coefficients of correlation for chorus activity versus magnetic activity were determined on a monthly basis. A seasonal variation in these correlations is indicated which appears to be unique for the geomagnetic latitude of College. A preliminary statistical study of one of the more easily measured characteristics of chorus is discussed. The characteristic chosen is the mid-frequency in an element of chorus. A diurnal variation in this parameter is indicated.
    • Low Energy Cosmic Ray Events Associated With Solar Flares

      Reid, George C.; Leinbach, Harold (Geophysical Institute at the University of Alaska, 1959-09)
    • Luminous night clouds and low latitude auroras

      Elvey, C.T. (Geophysical Institute at the University of Alaska, 1955-09)
    • A Magneto-Ionic Theory of the Aurora

      Reid, G. C. (Geophysical Institute at the University of Alaska, 1958-12)
      A qualitative description of the development of a typical auroral display as the result of an electrical discharge in the ionosphere is presented. The prime cause of the discharge is taken as the potential difference existing between points in the interplanetary medium as a result of an interaction between charged particles of solar origin and the earth's magnetic field. The characteristics of the occasional very intense aurorae visible over large areas of the earth are discussed, as well as the normal diurnal and seasonal variation of auroral occurrence. The origin of the electric field is discussed, and a possible explanation in terms of particles trapped in the earth’s magnetic field, is presented.
    • The measurement of ionospheric absorption using extraterrestrial radio waves

      Little, C. G. (Geophysical Institute at the University of Alaska, 1957-01-28)
      Introduction: The discovery by Jansky in 1932 of the presence of radio waves incident upon the earth from outer space has led to several new methods of studying the earth's upper atmosphere. This report describes the manner in which these extraterrestrial radio waves may be used to measure the radio absorption characteristics of the ionosphere. It opens with a brief discussion of the theory of ionospheric absorption; this is followed by a description of the basic principles involved in this new technique. Two different types of equipment which may be used for this type of absorption measurement are then discussed. The report concludes with a brief summary of three types of ionospheric absorption phenomena which have been studied at various latitudes with such equipments.
    • A Note on Harmonic Analysis of Geophysical Data with Special Reference to the Analysis of Geomagnetic Storms

      Sugiura, Masahisa (Geophysical Institute at the University of Alaska, 1960-04-18)
      Some geophysical characteristics tend to have a fixed distribution relative to the sun. An example is the distribution of air temperature on an ideal earth that is perfectly symmetrical (e.g., in its pattern of land and water) about its axis of rotation. In such a case the geophysical characteristic at any fixed station on the earth undergoes a daily variation that depends only on local time (and latitude and season). This simple pattern of daily change may be modified by intrinsic changes in the solar influences on the earth. The harmonic components of the daily variation at any station may in this case undergo phase changes, in some respects corresponding to Doppler shifts of frequency in optical or sonic phenomena. Care is then needed if the results of harmonic analysis are to be properly interpreted. Such interpretation is discussed with reference to the parts Dst and DS of the magnetic storm variations. Like caution must be observed in cases where the amplitude of a harmonic variation changes,with fixed phase.
    • Optical Earth Satellite Observations

      Abbott, W. N. (Geophysical Institute at the University of Alaska, 1958-02-14)
      I. INTRODUCTION The earlier orbits and ephemerides for the Soviet satellites were not sufficiently accurate to be very useful in making observations in Alaska. Extrapolations from our own observations gave better predictions. This merely pointed out the fact that rough observations of meridian transits at high latitudes will give better values of the inclination of the orbit than precision observations at low latitudes. Hence, it was decided to observe visually the meridian transits estimating the altitude by noting the position with respect to the stars or using crude alidade measurements. The times of the earlier observations were observed on a watch or clock and the clock correction obtained from WWV. Later the times were determined with the aid of stop watches, taking time intervals from WWV signals. This rather meager program of optical observations of the Soviet satellites was undertaken to give supplementary data for use of the radio observations, and particularly to assist in the prediction of position of the satellite so that the 61-foot radar of Stanford Research Institute could be set accurately enough to observe it (the beam width at the half-power points is about 3°). This report contains primarily the visual observations made at the Geophysical Institute by various members of the staff, and a series of observations by Olaf Halverson at Nome, Alaska. In addition there is a short discussion of the geometry of the trajectory, the illumination of a circumpolar satellite, and a note on the evaluation of Brouwer's moment factors.
    • An Optics Field Site for Auroral Studies

      Clark, K. C.; Romick, G. J. (Geophysical Institute at the University of Alaska, 1958-07)
      The earlier orbits and ephemerides for the Soviet satellites were not sufficiently accurate to be very useful in making observations in Alaska. Extrapolations from our own observations gave better predictions. This merely pointed out the fact that rough observations of meridian transits at high latitudes will give better values of the inclination of the orbit than precision observations at low latitudes. Hence, it was decided to observe visually the meridian transits estimating the altitude by noting the position with respect to the stars or using crude alidade measurements. The times of the earlier observations were observed on a watch or clock and the clock correction obtained from WWV. Later the times were determined with the aid of stop watches, taking time intervals from WWV signals. This rather meager program of optical observations of the Soviet satellites was undertaken to give supplementary data for use of the radio observations, and particularly to assist in the prediction of position of the satellite so that the 61-foot radar of Stanford Research Institute could be set accurately enough to observe it (the beam width at the half-power points is about 3°). This report contains primarily the visual observations made at the Geophysical Institute by various members of the staff, and a series of observations by Olaf Halverson at Nome, Alaska. In addition there is a short discussion of the geometry of the trajectory, the illumination of a circumpolar satellite, and a note on the evaluation of Brouwer's moment factors.
    • Papers read at the Conference on Arctic Radio Wave Propagation

      Elvey, C.T. (Geophysical Institute at the University of Alaska, 1956-01-26)
      On February 18, 1954, we held a conference attended by representatives of military organizations in Alaska to discuss general problems of radio communications in the Arctic. Since that conference was so successful, we have decided to hold a second conference broadening its scope in attendance and subject matter with the idea of making the conference an annual event. At this conference, and we hope future ones, we had the active participation of the North Pacific Radio Warning Service of the National Bureau of Standards. Included in the discussions at this conference were some of the new equipments and techniques being used at the Geophysical Institute in its research work. In particular, I refer to the employment of radio astronomy as a tool for ionospheric research.
    • Photometric Studies of Auroral Luminosity and its Connection with Some Atmosphere Ionization Phenomena

      Murcray, W. B. (Geophysical Institute at the University of Alaska, 1958-09)
      The auroral radiation, 3914 AO, received from the entire sky on a horizontal diffusing plate was monitored continuously during the nights of 1955-56 and 1956-57. The 1955-56 data and part of the 1956-57 data were used to obtain a diurnal curve for the sky luminosity in this wavelength. The auroral light increases to a broad maximum which lasts from magnetic midnight till dawn. The luminosity was found to correlate fairly well with absorption as inferred from F-min values and with (F Eg)2 and very well with the magnetic K indices.
    • Radiation Information from 1958 δ2

      Basler, R. P.; DeWitt, R. N.; Reid, G. C. (Geophysical Institute at the University of Alaska, 1960-01)
      The telemetered radiation information from the satellite 1958 δ2 (Sputnik III) has been analyzed for sixty-two separate passes recorded in College, Alaska. The data indicate a dependence of radiation intensity on altitude in the range 250-500 km. Both the high and low energy components apparently contribute to the overall increase of intensity with altitude, but the presence of a continuous afterglow in the scintillating crystal prevented detailed interpretation of the results.
    • Radio Properties of the Auroral Ionosphere

      Little, C. Gordon; Merritt, Robert P.; Rumi, G. C.; Stiltner, Ernest; Cognard, Rene (Geophysical Institute at the University of Alaska, 1958-05-31)
      This report, prepared during May 1958, summarizes the analysis of over twelve months of amplitude and angular scintillation data obtained using phase-switch interferometers at 223 Mc and 456 Mc on the Cygnus and Cassiopeia radio sources. The main parameters of the equipment used are first discussed. The method of scaling the records, involving the arbitrary division of the records into four (456 Mc) or six (223 Mc) levels of activity is then described. The probability distributions of the amplitude variations, as derived using a phase-sweep interferometer, are given for the main levels of scintillation activity at 223 Mc. Values of mean fractional deviation of power, -A.P. } for the main levels of activity at 223 Mc are also given. Preliminary probability distributions of angular deviation, and values of mean angular deviation, are also given for the different levels of activity at 223 Mc. The solar-time dependence and sidereal-time (elevation angle) dependence of the scintillation activity are presented arid c6mpared with similar data from temperate latitudes. The report concludes with a section in which a recent theory of radio star scintillations^ is modified to include the effect of an elongation of the irregularities along the earth's magnetic lines of force.
    • Radio Properties of the Auroral Ionosphere, Final Report (Phase I)

      Reid, C. G.; Stiltner, E.; Cognard, R. (Geophysical Institute at the University of Alaska, 1959-02)
      It has been found in recent years that a study of the fluctuations in the signals received from radio stars affords a powerful means of investigating the irregular structure of the ionosphere. In 1955 studies of this type, using frequencies of 223 Me and 456 Me, were initiated at the Geophysical Institute, with a view to investigating the smallscale structure of the highly disturbed auroral ionosphere. The purpose of this report is to present a complete description of the initial experimental arrangement. Further developments of the equipment and some results of analysis of the data have been presented in Quarterly Progress Reports covering the period since 1 June 1956, The report is divided into three sections. Section I contains a description of the basic philosophy of the experiment with an elementary discussion of the various parameters involved. Section II contains a brief description of the actual field installation, and Section III is devoted to the electronic design features. The diagrams pertaining to each section are located at the end of the section.
    • Radio Properties of the Auroral ionosphere, Supplement to Final Report (Phase I)

      Reid, G. C.; Stiltner, E. (Geophysical Institute at the University of Alaska, 1960-02-01)
      The usefulness of the phase-sweep technique in interferometers designed to record radio star signals is discussed. Interferometers of this type have been built for use at frequencies of 223 and 456 Mcs., and their electronic design is explained in some detail. The report also includes a discussion of the automatic data processing system which has been designed to operate in conjunction with the interferometers in the analysis of the amplitude scintillation of radio stars.
    • Radio Properties of the Auroral Ionosphere, Supplementary Progress Report

      Jalbert, Roland A.; Stiltner, Ernest; Reid, George C. (Geophysical Institute at the University of Alaska, 1958-08)
    • Radio wave propagation in the arctic

      Little, C.G. (Geophysical Institute at the University of Alaska, 1955-08-15)
      The report is divided into six main sections. The first five deal in turn with the five main Tasks specified in the contract; the sixth describes three other phases of work also concerned with radio wave propagation in the Territory. The progress in these various fields is summarized very briefly below. Task No. 1 Sweep-frequency Ionospheric Back-Scatter No progress was made on this task, owing to lack of equipment. Task No. 2 Auroral Radar Echoes An SCR-270 radar was modified for auroral radar research, and two main investigations were carried out with this equipment. The first one was to determine the mode of propagation of V.H.F. auroral echoes; the results showed conclusively that a strong aspect sensitivity exists, due to the auroral ionization being aligned along the lines of force of the earth's magnetic field. The second investigation was to determine the relationship between the radar echoes and the occurrence of visual aurora; these observations showed that the radar echoes are usually closely associated in range and azimuth with visual aurora, but that the visual brightness of the aurora is not the factor controlling the strengths of the echoes. No echoes were obtained at frequencies greater than 106 mc, owing to lack of suitable equipment. Task No. 3 Investigation of Microwave Link The experimental, observations carried out on this link showed the absence of significant tropospheric refraction effects, and the work has now been terminated. Task No. k Prediction of Auroral and Ionospheric Storms The prediction of aurora and ionospheric storms presumes a thorough understanding of the phenomena. A brief review is given of the source of the disturbances, a stream of ionized particles from the sun, and the several influences which are observed during £nd subsequent to the bombardment of the atmosphere by these particles. Research in several phases of the problem which are in progress at the Institute are mentioned as well as that which is being done on this contract. The principle effort during the past year on this contract was development of some techniques for a better understanding of the aurora. These are the all-sky camera which is being used to study the development of an auroral display and the photoelectric photometer which appears to be useful in supplying data for an index of auroral activity. Some preliminary results from both of these equipments are presented. Task No. 5 Whistlers Observations have shown the fairly frequent occurrence of whistlers at College during the early part of July 1955» Tape recordings of some of these whistlers are now being analysed to determine their frequency dispersion. Additional Work Three main phases of additional work, dealing respectively with the tropospheric propagation of V.H.F. radio waves, the diffraction and scattering of V.H.F. radio waves by mountains, and the absorption of H.F. radio waves of the ionosphere were carried out at the Geophysical Institute. Numbers one and three of these were conducted at the request of the Alaskan Command, U.S. Air Force; the second problem was investigated in view of its possible importance in point-to-point communication in the Territory.
    • Radio wave propagation in the arctic

      Little, C.G.; Dyce, R.B.; Hessler, V. P.; Leonard, R. S.; Owren, L.; Roof, R. B.; Sugiura, M.; Swenson, G. W. Jr (Geophysical Institute at the University of Alaska, 1956)
      The main body of this report is divided into eight sections, corresponding to the eight aspects of Arctic radio wave propagation listed in Section I, Purposes of the Contract, In cases where the work has already been fully described in Interim Scientific Report No. 1 (AFCRC-TN- 55-579, here in after referred to as R(l)), brief summaries only are given. The progress in these eight fields is summarized as follows: Task No. 1 Sweep-Frequency Ionospheric Backscatter Because of lack of equipment, no progress was made on this task. Task No. 2 Auroral and Meteor Echoes Three frequencies were used in this work: (a) At 50 me A low“power9 50 me radar equipments specially designed and built for auroral radar research, was operated with a steerable antenna to monitor both auroral and meteor activity,, The results showed that the diurnal distribution of meteor activity is similar at College to that observed elsewhere, and that the meteor echo rates observed on this equipment are not affected by the presence of aurora. (b) At 106 me The 106 me SCR 270 DA radar was used for two main experiments, as described in R(l). First, the aspect sensitivity of the auroral echoes was investigated. The results showed clearly that the auroral ionization giving rise to VHF auroral radar echoes is aligned along the earth's magnetic lines of force3 in that the auroral radar echoes are strongest when the radio waves are traveling perpendicularly to the magnetic lines of force through the aurora. Second, the relationship between visual and radar aurora was investigated; this work showed that the auroral radar echoes are often closely associated in range and azimuth with visual aurora, although the strength of the echoes is not proportional to the visual brightness of the auroral forms„ (c) At 210 me The 210 me SA-2 radar was installed in a trailer and tested without modification, It was then modified by the building of a steerable 16-Yagi array, by increasing the pulse length, and by reducing the receiver bandwidth„ Simultaneous operation of the 50 me and the improved 210 me equipment resulted in the detection of many auroral echoes at the lower frequency; no auroral (or meteor) echoes were obtained on the 210 me equipment during the contract period although good mountain * echoes were obtained at ranges up to 250 km„ Task No„ 3 Investigation of Microwave Link As explained in R(l), the experimental observations carried out on this link showed the absence of significant tropospheric refraction effects, and the work was terminated at the end of the first year of the contract. Task No. 4 Prediction of Auroral and Ionospheric Storms Several types of work were undertaken in order to improve our understanding of auroral and ionospheric storms; these storms are two aspects of the bombardment of the upper atmosphere by particles from the sun, In particular, a solar radio interferometer was set up to monitor the solar radio emissions at 65 me As described in R(l), an all sky camera and a photoelectric photometer were developed for the monitoring of the visual auroral activity. An investigation of earth potentials has shown that they provide a simple method of monitoring magnetic activity; some tests were also made using a rapid-response electronic magnetometer. Some of the results obtained with these equipments are discussed in the report. A study of the form of the front surface of a neutral corpuscular stream advancing into a magnetic field similar to the earth's magnetic field is presented. This study shows the presence of equatorial and polar forbidden zones and the fact that only the particles arriving near the border between these forbidden zones can reach the earth's upper atmosphere. An equatorial motion of the zone of bombardment could be produced by an increase either in particle density or in particle velocity. Task No. 5 Whistlers A new type of whistler has been discovered that has simultaneous rising and descending components. Analysis of data obtained during the contract period indicates a diurnal variation in the rate of occurrence of whistlers that appears to be correlated with ionospheric heights. A correlation between the day-to- day occurrence of the dawn chorus and the daily K-index sums is also found. Task No. 6 Diffraction and Scatter of Radio Waves by Mountains (a) Diffraction The diffraction of VHF radio waves by mountains has been investigated over three diffraction paths. The results show that the experimentally observed signal strengths are in fair agreement with the values calculated theoretically using knife-edge approximations. One important observation, which has not been reported previously, is the variability of the diffracted signal strength from point to point across the ground. Also, although diffracted signals are normally described as being very constant in amplitude, slow fades lasting some hours and occurring over a relatively narrow frequency band were observed over one 200- mile path. (b) Mountain scatter Observations of mountain scatter were made using the SCR-270 DA radar and a mobile receiving equipment. The results imply that detectable scattered signals can be obtained over a very wide range of azimuths (greater than + 135°) relative to the line joining the transmitter and the mountain. It was found that the scattered signals were considerably broadened in pulse length.Task No. 7 Ionospheric Absorption The work done in connection with ionospheric absorption under this contract has been described previously in R(l). Undertaken at the request of the 58th Weather Reconnaissance Squadron, USAF, this study demonstrated convincingly that their communication failures were caused by ionospheric absorption phenomena, rather than by equipment or personnel failures. Task No. 8 Assistance to the Alaska Air Command on Problems of Radio Propagation As described in R(l), an investigation of a VHF radio link was made at the request of the Alaska Air Command. Continuous records of received signal strength at each end of the link revealed that the communication failures were caused by tropospheric refraction effects. A low-noise preamplifier, built and operated in parallel with a normal equipment, was found to reduce the number of fade-outs. A one-day symposium on Arctic radio wave propagation was held at the Geophysical Institute on January 26, 1956, for the benefit of communications personnel in the territory,, Approximately fifty visitors attended these meetings. The Geophysical Institute has also assisted the Alaska Air Command by the loan of electronic equipment and pen recorders as well as by supplying specialists who have acted in an advisory capacity on problems of radio wave propagation.