Browsing School of Arts and Sciences by Subject "Iceberg calving"
Now showing items 1-1 of 1
-
Granular decoherence precedes ice mélange failure and glacier calving at Jakobshavn IsbræThe stability of the world’s largest glaciers and ice sheets depends on mechanical and thermodynamic processes occurring at the glacier–ocean boundary. A buoyant agglomeration of icebergs and sea ice, referred to as ice mélange, often forms along this boundary and has been postulated to affect ice-sheet mass losses by inhibiting iceberg calving. Here, we use terrestrial radar data sampled every 3 min to show that calving events at Jakobshavn Isbræ, Greenland, are preceded by a loss of flow coherence in the proglacial ice mélange by up to an hour, wherein individual icebergs flowing in unison undergo random displacements. A particle dynamics model indicates that these fluctuations are likely due to buckling and rearrangements of the quasi-two-dimensional material. Our results directly implicate ice mélange as a mechanical inhibitor of iceberg calving and further demonstrate the potential for real-time detection of failure in other geophysical granular materials.