• Active seismic studies in valley glacier settings: strategies and limitations

      Zechmann, Jenna M.; Booth, Adam D.; Truffer, Martin; Gusmeroli, Alessio; Amundson, Jason M.; Larsen, Christopher S. (International Glaciological Society, 2018-09-20)
      Subglacial tills play an important role in glacier dynamics but are difficult to characterize in situ. Amplitude Variation with Angle (AVA) analysis of seismic reflection data can distinguish between stiff tills and deformable tills. However, AVA analysis in mountain glacier environments can be problem- atic: reflections can be obscured by Rayleigh wave energy scattered from crevasses, and complex basal topography can impede the location of reflection points in 2-D acquisitions. We use a forward model to produce challenging synthetic seismic records in order to test the efficacy of AVA in crevassed and geo- metrically complex environments. We find that we can distinguish subglacial till types in moderately cre- vassed environments, where ‘moderate’ depends on crevasse spacing and orientation. The forward model serves as a planning tool, as it can predict AVA success or failure based on characteristics of the study glacier. Applying lessons from the forward model, we perform AVA on a seismic dataset col- lected from Taku Glacier in Southeast Alaska in March 2016. Taku Glacier is a valley glacier thought to overlay thick sediment deposits. A near-offset polarity reversal confirms that the tills are deformable.
    • Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland

      Walter, Fabian; Amundson, Jason M.; O'Neel, Shad; Truffer, Martin; Fahnestock, Mark; Fricker, Helen A. (American Geophysical Union, 2012-03-27)
      We investigated seismic signals generated during a large-scale, multiple iceberg calving event that occurred at Jakobshavn Isbræ, Greenland, on 21 August 2009. The event was recorded by a high-rate time-lapse camera and five broadband seismic stations located within a few hundred kilometers of the terminus. During the event two full-glacier-thickness icebergs calved from the grounded (or nearly grounded) terminus and immediately capsized; the second iceberg to calve was two to three times smaller than the first. The individual calving and capsize events were well-correlated with the radiation of low-frequency seismic signals (<0.1 Hz) dominated by Love and Rayleigh waves. In agreement with regional records from previously published ‘glacial earthquakes’, these low-frequency seismic signals had maximum power and/or signal-to-noise ratios in the 0.05–0.1 Hz band. Similarly, full waveform inversions indicate that these signals were also generated by horizontal single forces acting at the glacier terminus. The signals therefore appear to be local manifestations of glacial earthquakes, although the magnitudes of the signals (twice-time integrated force histories) were considerably smaller than previously reported glacial earthquakes. We thus speculate that such earthquakes may be a common, if not pervasive, feature of all full-glacier-thickness calving events from grounded termini. Finally, a key result from our study is that waveform inversions performed on low-frequency, calving-generated seismic signals may have only limited ability to quantitatively estimate mass losses from calving. In particular, the choice of source time function has little impact on the inversion but dramatically changes the earthquake magnitude. Accordingly, in our analysis, it is unclear whether the smaller or larger of the two calving icebergs generated a larger seismic signal.
    • The archaeology of human- dog relations in Northwest Alaska

      Hill, Erica (Routledge, 2018)
      Some 1500 years ago, on a gravel spit extending into the Chukchi Sea, people living at the site of Ipiutak buried several members of their community.
    • Artistic Statement

      Meadow, Olive (Brend); Brend, Olive Mallory (2022-04-03)
    • Assessing prevalence and correlates of blue‑colored fesh in lingcod (Ophiodon elongatus) across their geographic range

      Galloway, Aaron W. E.; Beaudreau, Anne H.; Thomas, Michael D.; Basnett, Bonnie L.; Lam, Laurel S.; Hamilton, Scott L.; Andrews, Kelly S.; Schram, Julie B.; Watson, Jessica; Samhouri4, Jameal F. (Springer, 2021-08-17)
      Intraspecific variation in external and internal pigmentation is common among fishes and explained by a variety of biological and ecological factors. Blue-colored flesh in fishes is relatively rare but has been documented in some species of the sculpin, greenling, and perch families. Diet, starvation, photoprotection, and camouflage have all been suggested as proximate mechanisms driving blue flesh, but causal factors are poorly understood. We evaluated the relative importance of biological and spatial factors that could explain variation in blue coloration in 2021 lingcod (Ophiodon elongatus) captured across their range in the northeastern Pacific, from southeast Alaska to southern California. The probability of having blue flesh was highest for fish that were female, caught in shallower water, and smaller in body size. The incidence of blueness varied by region (4–25% of all fish) but was also confounded by differences in sex ratios of fish caught among regions. We analyzed the multivariate fatty acid composition of a subset of 175 fish from across the sampling range to test for differences in trophic biomarkers in blue lingcod. Lingcod fatty acid composition differed between regions and flesh colors but not between sexes. Blue-fleshed fish had lower concentrations of total fatty acids, 18:1ω-9, 16:1ω-7, 18:1ω-7, and ω-6 fatty acids, suggesting differences in energetics and energy storage in blue fish. While our data indicate potential links between diet and blue flesh in lingcod, important questions remain about the physiological mechanisms governing blueness and its biological consequences.
    • Assessing the Behavioural Responses of Small Cetaceans to Unmanned Aerial Vehicles

      Castro, J.; Borges, F. O.; Cid, A.; Laborde, M. I.; Rosa, R.; Pearson, Heidi C. (Multidisciplinary Digital Publishing Institute, 2021-01-05)
      Unmanned Aerial Vehicles (UAVs), or drones, have recently emerged as a relatively affordable and accessible method for studying wildlife. Vertical Take-off and Landing (VTOL) UAVs are appropriate for morphometric, behavioural, abundance and demographic studies of marine mammals, providing a stable, nonintrusive and highly manoeuvrable platform. Previous studies using VTOL UAVs have been conducted on various marine mammal species, but specific studies regarding behavioural responses to these devices are limited and scarce. The aim of this study was to evaluate the immediate behavioural responses of common (Delphinus delphis) and bottlenose (Tursiops truncatus) dolphins to a VTOL UAV flown at different altitudes. A multirotor (quadcopter) UAV with an attached GoPro camera was used. Once a dolphin group was located, the UAV was flown at a starting height of 50 m directly above the group, subsequently descending 5 m every 30 s until reaching 5 m. We assessed three behavioural responses to a VTOL UAV at different heights: (i) direction changes, (ii) swimming speed and (iii) diving. Responses by D. delphis (n = 15) and T. truncatus (n = 10) groups were analysed separately. There were no significant responses of T. truncatus to any of the studied variables. For D. delphis, however, there were statistically significant changes in direction when the UAV was flown at a height of 5 m. Our results indicate that UAVs do not induce immediate behavioural responses in common or bottlenose dolphins when flown at heights > 5 m, demonstrating that the use of VTOL UAVs to study dolphins has minimal impact on the animals. However, we advise the use of the precautionary principle when interpreting these results as characteristics of this study site (e.g., high whale-watching activity) may have habituated dolphins to anthropogenic disturbance.
    • Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff

      Holt, Amy D.; Kellerman, Anne M.; Li, Wenbo; Stubbins, Aron; Wagner, Sasha; McKenna, Amy; Fellman, Jason B.; Hood, Eran; Spencer, Robert G. M. (American Geophysical Union, 2021-11-04)
      Dissolved organic matter (DOM) in glacier runoff is aliphatic-rich, yet studies have proposed that DOM originates mainly from allochthonous, aromatic, and often aged material. Allochthonous organic matter (OM) is exposed to ultraviolet radiation both in atmospheric transport and post-deposition on the glacier surface. Thus, we evaluate photochemistry as a mechanism to account for the compositional disconnect between allochthonous OM sources and glacier runoff DOM composition. Six endmember OM sources (including soils and diesel particulate matter) were leached and photo-irradiated for 28 days in a solar simulator, until >90% of initial chromophoric DOM was removed. Ultrahigh-resolution mass spectrometry was used to compare the molecular composition of endmember leachates pre- and post-irradiation to DOM in supraglacial and bulk runoff from the Greenland Ice Sheet and Juneau Icefield (Alaska), respectively. Photoirradiation drove molecular level convergence between the initially aromatic-rich leachates and aromatic-poor glacial samples, selectively removing aromatic compounds (−80 ± 19% relative abundance) and producing aliphatics (+75 ± 35% relative abundance). Molecular level glacier runoff DOM composition was statistically indistinguishable to post-irradiation leachates. Bray-Curtis analysis showed substantial similarity in the molecular formulae present between glacier samples and post-irradiation leachates. Post-irradiation leachates contained 84 ± 7.4% of the molecular formulae, including 72 ± 17% of the aliphatic formulae, detected in glacier samples. Our findings suggest that photodegradation, either in transit to or on glacier surfaces, could provide a mechanistic pathway to account for the disconnect between proposed aromatic, aged sources of OM and the aliphatic-rich fingerprint of glacial DOM.
    • Behavioral observations and stable isotopes reveal high individual variation and little seasonal variation in sea otter diets in Southeast Alaska

      LaRoche, Nicole; King, Sydney L.; Rogers, Matthew C.; Eckert, Ginny L.; Pearson, Heidi C. (Marine Ecology Progress Series, 2021-10-28)
      Two complementary approaches were used to assess year-round variation in the diet of sea otters Enhydra lutris around Prince of Wales Island (POW) in southern Southeast Alaska, a region characterized by mixed-bottom habitat. We observed sea otters foraging to determine diet composition during the spring and summer. Then, we obtained sea otter vibrissae, which record temporal foraging patterns as they grow, from subsistence hunters to identify year-round changes in sea otter diets via stable isotope analysis of carbon (δ13C) and nitrogen (δ15N). We compared the stable isotopes from sea otter vibrissae and sea otter prey items that were collected during spring, summer, and winter. Overall, year-round sea otter diet estimates from stable isotope signatures and visual observations from spring and summer were dominated by clams in terms of biomass, with butter clams Saxidomus gigantea the most common clam species seen during visual observations. Our results indicate that these sea otters, when considered together at a regional level around POW, do not exhibit shifts in the main prey source by season or location. However, sea otter diets identified by stable isotopes had a strong individual-level variation. Behavioral variation among individual sea otters may be a primary driving factor in diet composition. This study provides quantitative diet composition data for modeling predictions of invertebrate population estimates that may aid in the future management of shellfisheries and subsistence hunting and the development of co-management strategies for this protected species.
    • Bibliography of Publications

      Straley, Janice M. (University of Alaska Southeast, 2016)
    • Blocking a wave: frequency band gaps in ice shelves with periodic crevasses

      Freed-Brown, Julian; Amundson, Jason M.; MacAyeal, Douglas R.; Zhang, Wendy W. (International Glaciological Society, 2012)
      We assess how the propagation of high-frequency elastic-flexural waves through an ice shelf is modified by the presence of spatially periodic crevasses. Analysis of the normal modes supported by the ice shelf with and without crevasses reveals that a periodic crevasse distribution qualitatively changes the mechanical response. The normal modes of an ice shelf free of crevasses are evenly distributed as a function of frequency. In contrast, the normal modes of a crevasse-ridden ice shelf are distributed unevenly. There are ‘band gaps’, frequency ranges over which no eigenmodes exist. A model ice shelf that is 50 km in lateral extent and 300 m thick with crevasses spaced 500 m apart has a band gap from 0.2 to 0.38 Hz. This is a frequency range relevant for ocean-wave/ice-shelf interactions. When the outermost edge of the crevassed ice shelf is oscillated at a frequency within the band gap, the ice shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice shelf is confined to a small region near the outermost edge of the ice shelf and effectively ‘blocked’ from reaching the interior.
    • Care Package for Eva

      Wall, Emily (Cirque, 2016-07-18)
    • A Changing Hydrological Regime: Trends in Magnitude and Timing of Glacier Ice Melt and Glacier Runoff in a High Latitude Coastal Watershed

      Young, Joanna C.; Pettit, Erin; Arendt, Anthony; Hood, Eran; Liston, Glen E.; Beamer, Jordan (American Geophysical Union, 2021-05-20)
      With a unique biogeophysical signature relative to other freshwater sources, meltwater from glaciers plays a crucial role in the hydrological and ecological regime of high latitude coastal areas. Today, as glaciers worldwide exhibit persistent negative mass balance, glacier runoff is changing in both magnitude and timing, with potential downstream impacts on infrastructure, ecosystems, and ecosystem resources. However, runoff trends may be difficult to detect in coastal systems with large precipitation variability. Here, we use the coupled energy balance and water routing model SnowModel-HydroFlow to examine changes in timing and magnitude of runoff from the western Juneau Icefield in Southeast Alaska between 1980 and 2016. We find that under sustained glacier mass loss (−0.57 ± 0.12 m w. e. a−1), several hydrological variables related to runoff show increasing trends. This includes annual and spring glacier ice melt volumes (+10% and +16% decade−1) which, because of higher proportions of precipitation, translate to smaller increases in glacier runoff (+3% and +7% decade−1) and total watershed runoff (+1.4% and +3% decade−1). These results suggest that the western Juneau Icefield watersheds are still in an increasing glacier runoff period prior to reaching “peak water.” In terms of timing, we find that maximum glacier ice melt is occurring earlier (2.5 days decade−1), indicating a change in the source and quality of freshwater being delivered downstream in the early summer. Our findings highlight that even in maritime climates with large precipitation variability, high latitude coastal watersheds are experiencing hydrological regime change driven by ongoing glacier mass loss.
    • Climate-Mediated Changes to Linked Terrestrial and Marine Ecosystems across the Northeast Pacific Coastal Temperate Rainforest Margin

      Bidlack, Allison Lynn; Bisbing, Sarah; Buma, Brian; Diefenderfer, Heida L.; Fellman, Jason B.; Floyd, William C.; Giesbrecht, Ian; Lally, Amritpal; Lertzman, Ken P.; Perakis, Steven S.; et al. (Oxford University Press on behalf of American Institute of Biological Sciences., 2021-02-10)
      Coastal margins are important areas of materials flux that link terrestrial and marine ecosystems. Consequently, climate-mediated changes to coastal terrestrial ecosystems and hydrologic regimes have high potential to influence nearshore ocean chemistry and food web dynamics. Research from tightly coupled, high-flux coastal ecosystems can advance understanding of terrestrial–marine links and climate sensitivities more generally. In the present article, we use the northeast Pacific coastal temperate rainforest as a model system to evaluate such links. We focus on key above- and belowground production and hydrological transport processes that control the land-to-ocean flow of materials and their influence on nearshore marine ecosystems. We evaluate how these connections may be altered by global climate change and we identify knowledge gaps in our understanding of the source, transport, and fate of terrestrial materials along this coastal margin. Finally, we propose five priority research themes in this region that are relevant for understanding coastal ecosystem links more broadly.
    • A computational investigation of iceberg capsize as a driver of explosive ice-shelf disintegration.

      Amundson, Jason M.; Guttenberg, Nicolas; Abbott, Dorian S.; Burton, Justin C.; Cathles, L. M.; Macayeal, Douglas R.; Zhang, Wendy W. (International Glaciology Society, 2011)
      Potential energy released from the capsize of ice-shelf fragments (icebergs) is the immediate driver of the brief explosive phase of ice-shelf disintegration along the Antarctic Peninsula (e.g. the Larsen A, Larsen B and Wilkins ice shelves). The majority of this energy powers the rapidly expanding plume of ice-shelf fragments that expands outward into the open ocean; a smaller fraction of this energy goes into surface gravity waves and other dynamic interactions between ice and water that can sustain the continued fragmentation and break-up of the original ice shelf. As an initial approach to the investigation of ice-shelf fragment capsize in ice-shelf collapse, we develop a simple conceptual model involving ideal rectangular icebergs, initially in unstable or metastable orientations, which are assembled into a tightly packed mass that subsequently disassembles via massed capsize. Computations based on this conceptual model display phenomenological similarity to aspects of real ice-shelf collapse. A promising result of the conceptual model presented here is a description of how iceberg aspect ratio and its statistical variance, the two parameters related to ice-shelf fracture patterns, influence the enabling conditions to be satisfied by slow-acting processes (e.g. environmentally driven melting) that facilitate ice-shelf disintegration.
    • Conditions for staggering and delaying outplantings of the kelps Saccharina latissima and Alaria marginata for mariculture

      Raymond, Amy E. T.; Stekoll, Michael S. (Wiley, 2021-08-02)
      We describe a method for production of kelp using meiospore seeding creating flexibility for extended storage time prior to outplanting. One bottleneck to expansion of the kelp farming industry is the lack of flexibility in timing of seeded twine production, which is dependent on the fertility of wild sporophytes. We tested methods to slow gametophyte growth and reproduction of early life stages by manipulating temperature of the kelp Saccharina latissima. Reducing temperature from 12 C to 4 C reduced gametophyte size, sporophyte size, egg production, and sporophyte production and subsequently was the best candidate condition for storage experiments of seeded twine. Next, we examined how storage of Alaria marginata and S. latissima seeded twine at 4 C under differing nutrient concentrations affected the viability of sporelings after being moved into optimal growth conditions. Seeded twine storage at 4 C with no alteration to culturing media showed no negative effects in sporophyte density and sporophyte length for both species. This method for seeded twine storage, “cold banking,” allowed seeded twine storage for at least an additional 36 days compared to standard methods, with a total of 56 days spent in the hatchery providing opportunity for outplanting timing and staggering to enhance aquaculture efficiency.

      Schuler, Alicia, R.; Pearson, Heidi C. (Cognizant, LLC, 2020-01-03)
      An increasing number of visitors to Juneau, AK, alongside a predictable population of humpback whales (Megaptera novaeangliae), has supported the substantial growth of its whale-watching indus- try. The industry provides benefits to the community through economic gains, while the experi- ence can foster environmental awareness and support for protection of whales and the environment. However, the sustainability of the industry could be jeopardized if increasing whale-watching vessel pressure affects the health of its resource, the whales. This study investigates whether participation in whale-watching tours in Juneau, AK can support conservation of whales and the environment. Participant knowledge, attitudes, intentions, and behaviors were obtained from 2,331 respondents in surveys before, after, and 6 months after a whale-watching tour during the 2016 and 2017 seasons. Following a whale watch, the percentage of participants that indicated whale watching as a knowl- edge source increased (p = 0.022), awareness of guidelines and regulations doubled (p < 0.001), and strong support for regulations increased (p = 0.016). Six months later, these responses remained significantly higher than before the whale watch. Despite knowledge of distance threshold increasing after a whale watch (p = 0.003) and 6 months after (p = 0.021), getting close to whales remained an important factor in a participant’s whale watch. Participants had a higher likelihood of strongly sup- porting guidelines and regulations if they indicated that boats can have a negative impact on whales or were aware of guidelines and regulations. Lastly, participants that acknowledged negative effects on whales from boats had higher overall proenvironmental attitudes. This study indicates that incor- porating messages that facilitate participant awareness of guidelines/regulations and the purpose of those measures can support conservation and protection of local whale populations through manag- ing participant expectations and ultimately encouraging operator compliance.
    • Cryofouling avoidance in the Antarctic scallop Adamussium colbecki

      Wong, William S. Y.; Hauer, Lukas; Cziko, Paul A.; Meister, Konrad (Springer Nature, 2022-01-21)
      The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones.
    • Deglacierization of a marginal basin and implications for outburst floods

      Kienholz, Christian; Pierce, Jamie; Hood, Eran; Amundson, Jason M.; Wolken, Gabriel; Jacobs, Aaron; Hart, Skye; Jones, Katreen Wikstrom; Abdel-Fattah, Dina; Johnson, Crane; et al. (Frontiers in Earth Science, 2020-05-27)
      Suicide Basin is a partly glacierized marginal basin of Mendenhall Glacier, Alaska, that has released glacier lake outburst floods (GLOFs) annually since 2011. The floods cause inundation and erosion in the Mendenhall Valley, impacting homes and other infrastructure. Here, we utilize in-situ and remote sensing data to assess the recent evolution and current state of Suicide Basin. We focus on the 2018 and 2019 melt seasons, during which we collected most of our data, partly using unmanned aerial vehicles (UAVs). To provide longer-term context, we analyze DEMs collected since 2006 and model glacier surface mass balance over the 2006–2019 period. During the 2018 and 2019 outburst flood events, Suicide Basin released ∼ 30 Å~ 106 m3 of water within approximately 4–5 days. Since lake drainage was partial in both years, these ∼ 30 Å~ 106 m3 represent only a fraction (∼ 60%) of the basin’s total storage capacity. In contrast to previous years, subglacial drainage was preceded by supraglacial outflow over the ice dam, which lasted ∼ 1 day in 2018 and 6 days in 2019. Two large calving events occurred in 2018 and 2019, with submerged ice breaking off the main glacier during lake filling, thereby increasing the basin’s storage capacity. In 2018, the floating ice in the basin was 36 m thick on average. In 2019, ice thickness was 29 m, suggesting rapid decay of the ice tongue despite increasing ice inflow from Mendenhall Glacier. The ice dam at the basin entrance thinned by more than 5 m a–1 from 2018 to 2019, which is approximately double the rate of the reference period 2006–2018. While ice-dam thinning reduces water storage capacity in the basin, that capacity is increased by declining ice volume in the basin and longitudinal lake expansion, with the latter process challenging to predict. The potential for premature drainage onset (i.e., drainage before the lake’s storage capacity is reached), intermittent drainage decelerations, and early drainage termination further complicates prediction of future GLOF events.
    • Depredating sperm whales in the Gulf of Alaska: local habitat use and long distance movements across putative population boundaries

      Straley, Janice M.; Schorr, G. S.; Thode, A. M.; Calambokidis, J.; Lunsford, C. R.; Chenoweth, Ellen M.; O'Connell, V. M.; Andrews, R. D. (Inter-Research Science Publisher, 2014-05-08)
      Satellite tags were attached to 10 sperm whales Physeter macrocephalus (1 whale was tagged in 2 different years) to determine the movements of sperm whales involved in removal of sablefish from longline fishing gear in the Gulf of Alaska (GOA). Tags transmitted from 3 to 34 d (median = 22) in 2007 and 7 to 158 d (median = 45) in 2009. Seven whales stayed in the GOA; all were associating with fishing vessels along the slope. Two whales headed south in June shortly after being tagged; one reached the inner third of the Sea of Cortez; the other’s last location was offshore Mexico at 14°N. A third whale stayed in the GOA until October and then headed south, reaching central Baja, Mexico, 158 d after tagging. The whales that travelled to lower latitudes followed no pattern in timing of departure, and at least 2 had different destinations. All whales passed through the California Current without stopping and did not travel to Hawaii; both are areas with known concentrations of sperm whales. Whales travelled faster when south of 56°N than when foraging in the GOA (median rate of median horizontal movement = 5.4 [range: 4.1 to 5.5] and 1.3 [range: 0.6 to 2.5] km h−1, respectively). Tagged sperm whales primarily travelled over the slope, but one spent considerable time over the ocean basin. Information on the timing and movement patterns of sperm whales may provide a means for fishermen to avoid fishing at whale hot spots, potentially reducing interactions between whales and fishermen.