• Ecological and physiological aspects of caribou activity and responses to aircraft overflights

      Maier, Julie Ann Kitchens (1996)
      I investigated the use of remote-sensing of caribou (Rangifer tarandus) activity to assess disturbance of low-altitude overflights by jet aircraft. Resource management agencies are concerned about the potential effects of these overflights on important species of ungulates. I hypothesized that low-altitude overflights would affect activity and movements of caribou, and thereby constitute a disturbance with negative consequences on energetics. I used caribou of the Delta Herd (DCH) and captive animals at the Large Animal Research Station (LARS) to address the hypotheses: caribou (1) exhibit equal activity day and night; (2) do not time activity to light; and (3) activity patterns do not change seasonally in response to daylength. Caribou were nychthemeral and exhibited uniform activity with no apparent timing to light. DCH caribou responded to seasonal changes in the environment by modifying activity (increased activity in response to insect harassment), whereas LARS caribou altered activity in response to fluctuating physiological variables (increased activity during rut). Changes in daylength did not affect activity. Data on activity from LARS and DCH caribou were compared with extant data on caribou of the Denali and Porcupine herds. Poor quality forage in winter was inferred from long resting bouts, and low availability of forage was inferred from long active bouts of post-calving caribou of the DCH. In midsummer, caribou of the DCH exhibited significantly longer active and shorter resting bouts than did LARS caribou, consistent with a moderate level of insect harassment. Responses of caribou to overflights were mild in late winter and, thus, overflights did not constitute a disturbance. Post-calving caribou responded to overflights by increasing daily activity, linear movements, incremental energy cost, and average daily metabolic rate. Energetic responses and movements were significantly related to the loudest overflight of the day. In the insect season, activity levels increased significantly in response to overflights but with no corresponding increase in linear movements or energetics. My recommendations are to prohibit aircraft overflights of caribou during calving and post-calving periods and during key feeding times in insect harassment seasons. Research indicates the possibility of more severe effects in nutritionally stressed animals.
    • Ecological And Social Influences On Population Dynamics And Genetics Of Moose In Alaska

      Schmidt, Jennifer Irene; McCracken, Kevin (2007)
      I examined social and ecological influences on moose (Alces alces gigas) in Alaska, USA, with respect to hunting success, antler size, and population genetic structure. Catch per unit effort (CPUE) is frequently used to assess hunter success; thus I hypothesized that landscape characteristics and moose density would affect success. Using hunter harvest tickets returned to the Alaska Department of Fish and Game, I modeled CPUE with Weibull regression. I determined success is significantly predicted by hunt location, mode of transportation, hunting regulations, use of commercial services (i.e., guides), year, road density, hunter-to-moose ratio, moose density, and hunter residency status. Antler size is an important factor for hunters and for mating potential in male moose. I hypothesized that moose density, habitat, and use of guides would correlate with antler size of harvested moose. I also predicted that guides would harvest moose with larger antlers and avoid areas where the hunter-to-moose ratio is high compared to nonguided hunters. Results indicated that antler size decreases with increases in moose density and harvest intensity due to density-dependent processes and a younger age structure in heavily harvested areas. Guided hunts tended to harvest larger antlered bulls and avoided areas of high hunter-to-moose ratios. In addition to age and nutrition, genetics influences antler size. I used eight microsatellites and five sample areas to resolve whether population structure exists among moose in Alaska. I hypothesized that population structure does exist given the intense harvest rates, polygynous mating style of moose, and heterogeneous landscape present in Alaska. Dispersal and gene flow between populations was proposed to occur via isolation-by-distance (IBD) with a positive linear relationship between geographic and genetic distance. Results indicated weak but significant population structure for moose in Alaska, and IBD was supported. Pairwise comparisons between populations indicated that moose have established separate populations except for between Tanana Flats and Koyukuk and Koyukuk and the Seward Peninsula. Lastly, I hypothesized incorporation of landscape characteristics and subsequent least-cost path would strengthen the significance of IBD. With an additional population, Tetlin, the significance of IBD as a mechanism for dispersal/gene flow for moose in Alaska was improved.
    • Ecological drivers of mercury accumulation in threespine stickleback fish

      Willacker, James J.; O'Hara, Todd; von Hippel, Frank; Buck, Loren; Welker, Jeffrey; Wipfli, Mark (2013-12)
      I utilized the ecological diversity displayed in the Cook Inlet adaptive radiation of threespine stickleback (Gasterosteus aculeatus species complex, hereafter 'stickleback') to examine the drivers of intra- and inter-population variation in total mercury (THg) concentrations. I examined the importance of sex, trophic position (TP), and habitat-specific foraging (measured as the proportion of the diet derived from benthic sources; a) in stickleback from Benka Lake, Alaska, a lake with both benthic and limnetic ecotypes. The results demonstrate that both sex and habitat-specific foraging are important determinants of THg concentrations in this threespine stickleback population. Specifically, male stickleback and stickleback foraging in limnetic habitats had higher THg concentrations than females or benthic foraging individuals. Further, I found that the relationships between THg concentration, TP, and a differed between the sexes such that TP and a were of approximately equal importance in female fish but TP was more important than a in male fish. I assessed the relative importance of these same factors in determining THg concentrations of stickleback from six lakes spanning a range of trophic ecologies. Across populations, I found sex and TP to be more important determinants of THg concentrations than reliance on benthic prey; however, there was substantial variation in the relative importance of these parameters in individual lakes. Across lakes I also found a positive correlation between THg concentrations in stickleback and the reliance on benthic prey, and my data suggest that differences in the bioavailability of Hg in the lakes were responsible for this relationship. I investigated temporal variation in the THg concentrations of Benka Lake stickleback. The temporal patterns observed in stickleback likely result from numerous physiological and ecological processes. I found that the importance and magnitude of these factors acting upon THg concentrations varied between sexes, ecotypes, or both, though the directions of the relationships were consistent across groups. Despite this variation, TP was consistently the most important determinant of Hg concentrations. Collectively, the results of this dissertation demonstrate that the ecological factors driving THg concentrations in stickleback are complex, likely integrate multiple confounding interactions, and often vary by sex, ecotype, and population (lake). To improve our understanding of the mechanisms underlying Hg bioaccumulation, future research should utilize experimental studies and larger numbers of wild populations to examine the independent effects of these variables within the context of varying physiologies and ecologies.
    • Ecological effects of spawning salmon on several southcentral Alaskan streams

      Piorkowski, Robert Joseph (1995)
      The ecological effects of salmon (Oncorhynchus spp.) carcasses on southcentral Alaskan streams were studied by: (1) observing salmon carcass decomposition and use; (2) comparing the macroinvertebrate community structure of streams receiving different inputs of salmon carcasses; and (3) quantifying the amount of marine-derived nitrogen (MDN) entering stream food webs using stable-isotope analysis. Abiotic mechanisms, such as large woody debris and the slow waters of stream margins and eddies were important in initial retention of salmon carcasses. Once entrained, carcasses decayed rapidly due to intense microbial processing. Stream insects and fishes were observed consuming carcasses, eggs, and smolts. Macroinvertebrate communities in streams receiving runs of salmon or in lake outlet streams were more diverse taxonomically. One functional feeding group, filterers (including net-spinning caddisflies (Hydropsychidae) uncommon in Alaska), increased in relative abundance. Although many other taxa also responded positively to enrichment, some taxa responded negatively. A significant difference existed in $\partial\sp{15}$N values between MDN and terrestrial sources but natural dissolved inorganic nitrogen contributions to stream food webs ($\approx$90-95% of total N) from groundwater generally overwhelmed the marine signal ($\approx$5-10% of total N). $\partial\sp{15}$N values generally suggested that some MDN ($\approx$15% of total N) entered into food webs after its incorporation into algal biomass but values for certain macroinvertebrate taxa (Arctopsyche and Plumiperla), salmon fry (Oncorhynchus spp.) grayling (Thymallus arcticus), rainbow trout (O. mykiss) and American dippers (Cinclus mexicanus) suggest these biota directly consume substantial amounts (40%-90%) of salmon protein. $\partial\sp{15}$N values in individual macroinvertebrate taxa usually cycled seasonally. All three elements of this investigation support the hypothesis that salmon carcasses can be important in structuring aquatic food webs.
    • Ecological factors influencing fish distribution in a large subarctic lake system

      Plumb, Miranda Paige (2006-05)
      The coastal climate and frequent wind storms in southwest Alaska create an atypical thermal environment (non-stratified in summer) in the remote Ugashik lakes. This study documents the distribution of lake trout 'Salvelinus namaycush, ' arctic char 'S. alpinus', Dolly Varden 'S. malma, ' arctic grayling 'Thymallus arcticus, ' round whitefish 'Prosopium cylindraceum, ' and pygmy whitefish 'P. coulterii' relative to depth, substrate particle size, food habits, length, and age in the absence of strong thermal structure. Sample sites were randomly chosen within sampling strata and gill nets were set at each site. Lake trout and round whitefish were most abundant and had the oldest individuals in the catch. In more typical thermally stratified lake systems lake trout and Arctic char usually move to colder, deeper water in summer. In the Ugashik lakes, however, both species were abundant in shallow water all summer. Prior to this study pygmy whitefish were undocumented in this system. The fish examined in the Ugashik lakes were opportunistic feeders, consuming organisms such as isopods and amphipods. Fish in the Ugashik lakes were found in locations different from what one would expect from predominant literature. Fisheries managers may need to take this into account in their fisheries management.
    • The ecological genetics of gynodioecy in Silene acaulis L. (Caryophyllaceae): spatial sex structure and inbreeding depression

      Keller, Stephen Robert (2002-12)
      Gynodioecy, the co-occurrence of females and hermaphrodites, is considered an intermediate step in the evolution of separate sexes in flowering plants. Highly variable female frequencies among populations suggest structuring of sex determining genes and differences in the relative fitness of females and hermaphrodites as seed parents. I investigated spatial variability in sex ratio and the effects of inbreeding on offspring quality in Silene acaulis. Female frequencies varied among populations from 0.32 to 0.69, and most were at temporal equilibrium. Females were significantly clumped within two of six populations. Females produced from 4 to 27 times as many fruits as hermaphrodites. Self-pollination of hermaphrodites reduced offspring survivorship and growth by an average of 67% compared to outcrosses. Overall, spatial variation in female frequency suggests a role of founder events and local seed dispersal. Low fruit production and reduced quality of inbred offspring suggest hermaphrodites may be functioning primarily as pollen donors.
    • Ecological interactions among important groundfishes in the Gulf of Alaska

      Barnes, Cheryl L.; Beaudrea, Anne H.; Dorn, Martin W.; Holsman, Kirstin K.; Hunsicker, Mary E.; Mueter, Franz J. (2019-12)
      Complex ecological interactions such as predation and competition play an important role in shaping the structure and function of marine communities. In fact, these processes can have greater impacts than those related to fishing. We assessed ecological interactions among economically important fishes in the Gulf of Alaska - a large marine ecosystem that has recently undergone considerable shifts in community composition. Specifically, we developed an index of predation for Walleye Pollock (Gadus chalcogrammus) to examine spatiotemporal changes in consumption, quantify portfolio effects, and better understand diversity-stability relationships within the demersal food web. We also evaluated the potential for competition between two important pollock predators, Arrowtooth Flounder (Atheresthes stomias) and Pacific Halibut (Hippoglossus stenolepis). We found highly variable predation intensity on Gulf of Alaska pollock. The combination of a single dominant predator and synchronous consumption dynamics indicated strong top-down control in the region. Spatial heterogeneity, however, may offset trophic instability at the basin scale. Assessments of resource partitioning provided little indication for competition between Arrowtooth Flounder and Pacific Halibut of similar lengths. Morphological differences between the two flatfish predators prompted an exploration into whether our conclusions about resource partitioning were dependent upon the size metric used. From this study, we found a relatively early onset of piscivory for Arrowtooth Flounder. Relationships between predator size and prey size also suggested gape limitation among Pacific Halibut sampled. Trophic niche separation was more pronounced for fishes with larger gapes, indicating greater potential for competition among smaller Arrowtooth Flounder and Pacific Halibut in Southeast Alaska. Reexamining basin-scale relationships between spatial and dietary overlap according to gape size would further elucidate the effects an increasing Arrowtooth Flounder population has had on changes in Pacific Halibut size-at-age. Results from this dissertation improve our understanding about the impacts of complex ecological interactions on population and community dynamics, and how those interactions may change in time, space, and under different environmental conditions.
    • Ecological mechanisms and effectiveness of bioremediation in Alaska

      Leewis, Mary-Cathrine Christina Elaine; Leigh, Mary Beth; O'Hara, Todd; Ruess, Roger; Taylor, D. Lee (2014-05)
      What drives microbial community structure and function is a fundamental question of microbial ecology. Soil microbial communities have wide ranging metabolic capabilities, which include performing oxidation-reduction reactions responsible for cycling of nutrients and organic compounds and biodegradation of pollutants. One major determinant of microbial function in soils is vegetation type. Considering plants are diverse in chemical composition, they impact the quantity and quality of carbon and nutrients available to microbes through root turnover, root leachates, as well as by altering pH and soil microclimate (moisture, temperature). Rhizosphere interactions, in the form of phytoremediation, can be capitalized upon to provide a potentially cost effective method for detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions that includes minimal site management. Here we investigate the potential mechanisms and related effectiveness of microbial communities and native boreal vegetation associated with contaminant degradation and biogeochemical cycling. We examined three different soil systems to understand how dominant vegetation type, historical treatment and contamination shape the microbial community structure and functional potential. First, we used stable isotope probing to understand how microbial communities act in concert to biotransform the recalcitrant contaminants, polychlorinated biphenyls. Second, we sought to understand if dominant vegetation type controls microbial community structure and function either through direct impacts of plant root exudates and detritus or indirectly through the influence of plants on soil chemistry, composition, and structure. Finally, we conducted a forensic investigation of a petroleum contaminated site with no active site management for 15 years to assess the long-term effects of phytoremediation on soil petroleum concentrations, microbial community and vegetation colonization. The results of these experiments provide novel insights into the mechanisms of contaminant removal in boreal forest soils and the role of plants in ecosystem resilience to contamination, and demonstrates that phytoremediation using native and local plants can be an effective means to treat petroleum contaminated soils.
    • The ecological niche of storm-petrels in the North Pacific and a global model of dimethylsulfide concentration

      Humphries, Grant R. W. (2010-05)
      Ecological niche modeling techniques were used to create global, monthly predictions of sea surface dimethylsulfide (DMS) concentrations, and breeding season distribution of Leach's Storm-Petrel (Oceanodroma luncorhoa) and Fork-Tailed Storm-Petrel (O. furcata) in the North Pacific. This work represents the first attempt to model DMS concentrations on a global scale using ecological niche modeling, and the first models of Storm-Petrel distribution for the North Pacific. Storm-Petrels have been shown to be attracted to DMS, and it is therefore likely that a model of sea surface DMS concentration would help explain and predict Storm-Petrel distribution. We have successfully created the most accurate models of sea surface DMS concentrations that we are currently aware of with global correlation (r) values greater than 0.45. We also created Storm-Petrel models with area under the receiver operating characteristic curve (AUC) values of greater than 0.90. Using just DMS as a predictor variable we were also able to create models with AUC values upwards of 0.84. Future conservation efforts on pelagic seabird species may be dependent on models like the ones created here, and it is therefore important that these methods are improved upon to help seabird management on all scales (global, national, regional and local).
    • Ecological studies of the benthic fauna in an arctic estuary

      Crane, James John (1974-08)
      Distributions and abundances of benthic fauna are described for the nearshore Beaufort Sea adjacent to the mouth of the Colville River. Harrison Bay, Simpson Lagoon, and the shallow waters seaward of the barrier islands were sampled with a small bottom trawl and grab during the late summer of 1971. This survey was part of a larger effort by the University of Alaska to obtain baseline information prior to oil exploration and development. Forty-seven species, dominated numerically by Crustacea, Hollusca, and Polychaeta were studied from a collection of 86 samples. The isopod, Mesidotea entonon, and the mysid, Mysis oculata were common to all areas examined. Standing stocks of both were significantly higher (P<0.05) seaward of the lagoons. The spatial distribution of infauna clearly reflected the influence of the seasonal zone of bottom-fast ice. The biology, life history, and production of selected species are described, and relationships between environmental factors discussed as related to understanding this nearshore community.
    • An ecological study of butter-clam (Saxidomus giganteus) toxicity in southeast Alaska

      Chang, John Chia-Chih (1971-05)
      Butter clams (Saxidomus giganteus) at South and North porpoise Islands and Pleasant Island, Southeast Alaska, were occasionally found to accumulate significant amounts (higher than the maximum human tolerance) of paralytic shellfish poison (PSP) at any season of the year, and to occasionally lose or regain PSP rapidly between two samplings. The fluctuations of toxicity levels were not similar at all stations and no consistent patterns were Observed. The toxicity of only 19 out of 53 samples collected at three high-toxicity stations exceeded the maximum human tolerance level for PSP (1200 MU), and clam samples taken from moderate and low-toxicity stations never exceeded this level. Neither phytoplankton populations nor hydrographic parameters had a consistently significant correlation with toxicity levels; however, fluctuations of phytoplankton numbers demonstrated an inverse relationship with fluctuations of inorganic nutrient concentrations. Dinoflagellate maxima tended to occur at relatively low salinity (22% - 29%) and relatively high temperatures (7°C - 16°C), whereas the diatom numbers did not significantly correlate with salinity or temperature. The three high-toxicity stations were all within Icy Passage; fluctuations of phytoplankton populations and the hydrographic conditions at these stations were similar, yet the fluctuations of toxicity levels were quite dissimilar. A number of possible sources may be responsible for the butter-clam toxicity in Southeast Alaska. However, more studies are needed to define the cause of the butter-clam poisoning problem in Southeast Alaska.
    • An ecological-physiology perspective on seabird responses to contemporary and historic environmental change

      Will, Alexis P.; Kitaysky, Alexander; Breed, Greg; Powell, Abby; Springer, Alan (2017-05)
      The chapters included in this dissertation implement an ecological-physiology approach to understanding how long-lived marine organisms, using seabirds as a model, respond to changes in the environment. Many seabird populations are governed by bottom-up processes, yet efforts to connect prey dynamics and parameters such as breeding performance often yield mixed results. Here I examined how individual foraging behavior and nutritional status change at the inter-annual, decadal, and multi-decadal scale. I validated that the concentration of the avian stress hormone in seabird feathers is indicative of their exposure to nutritional stress. I then used this technique to show that young seabirds (Rhinoceros auklets, Cerorhinca monocerata) that experience variable foraging conditions during their prolonged nestling period incurred higher nutritional stress when provisioned with prey that was relatively low in energy content. On the other hand, when examining adult foraging behavior, a signal of environmental variability was lost in the noise of changing diets. Foraging behavior of adults appeared to be highly flexible and less informative in regard to detecting an environmental change. I used stable isotope analysis to re-construct the isotopic niche dynamics (where and at what trophic level seabirds were obtaining prey) and partitioning of food resources for three abundant seabirds (common and thick-billed murres, Uria aalge, and U. lomvia, respectively; and black-legged kittiwakes, Rissa tridactyla) breeding in the southeastern Bering Sea under cold and warm states of the ecosystem. Access to diverse habitat reversed how seabirds partitioned prey during food shortages: seabirds with access to multiple habitats contracted their isotopic niche during food-limited conditions in contrast to the expansion of the isotopic niche observed for seabirds with access to only one type of habitat. Finally, I measured nutritional stress and stable isotope signatures (carbon and nitrogen) in contemporary and historic red-legged kittiwake (Rissa brevirostris) feather samples to examine how birds breeding on St. George Island have responded to changes in summer and winter conditions in the Bering Sea over time. Red-legged kittiwakes were less nutritionally stressed during warm summers and winters. It is not clear, however, whether all seabirds would do well if the Bering Sea were to break with its pattern of oscillating between warm and cold conditions. Prey for these birds may either be negatively affected by continuously warm conditions (murres and black-legged kittiwakes feeding on juvenile pollock, Gadus chalcogrammus) or the conditions that are most beneficial to the prey are not known (red-legged kittiwakes feeding on myctophids). With this work I suggest that measuring nutritional stress in feathers and using stable isotope analysis to characterize foraging niches may document more dynamic responses to changes in the environment than population level parameters such as breeding performance. To do so, however, requires a better understanding of the relationship between these individual-level responses and fitness.
    • Ecology and energetics of early life stages of walleye pollock in the eastern Bering Sea: the role of spatial variability across climatic regimes

      Siddon, Elizabeth Calvert; Mueter, Franz J.; Duffy, Janet T.; Heinz, Ron A.; Hillgruber, Nicola; Norcross, Brenda L. (2013-08)
      Understanding mechanisms behind variability in early life survival of marine fishes can improve predictive capabilities for recruitment success under changing climate conditions. Ecosystem changes in response to climate variability in the eastern Bering Sea affect commercial species including walleye pollock (Theragra chalcogramma), which represent an ecologically important component of the ecosystem and support the largest commercial fishery in the United States. The goal of my dissertation was to better understand spatial and temporal dynamics in the ecology of early life stages of walleye pollock in the eastern Bering Sea through: (1) an examination of shifts in larval fish community composition in response to environmental variability across both warm and cold conditions; (2) a quantification of the seasonal progression in energy content of age-0 walleye pollock which provides critical information for predicting overwinter survival and recruitment to age-1 because age-0 walleye pollock rely on sufficient energy reserves to survive their first winter; and (3) a modeling approach to better understand the role of prey quality, prey composition, and water temperature on spatial and temporal patterns of juvenile walleye pollock growth with implications for year-class survival and recruitment success. In the community analysis, I identified a strong cross-shelf gradient delineating slope and shelf assemblages, an influence of water masses from the Gulf of Alaska on species composition, and the importance of nearshore areas for larval fish. Species assemblages differed between warm and cold periods, and larval abundances, including that of walleye pollock, were generally greater in warm years. I identified different energy allocation strategies indicating that distinct ontogenetic stages face different survival constraints. Larval walleye pollock favored allocation to somatic growth, presumably to escape size-dependent predation, while juveniles allocated energy to lipid storage in late summer. Finally, I provide evidence that a spatial mismatch between juvenile walleye pollock and growth 'hot spots' in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. I highlight the importance of climate-driven spatial patterns in community structure, prey dynamics, and environmental conditions that influence the growth and survival of an important gadoid population in a sub-arctic marine ecosystem.
    • Ecology of a reestablished population of muskoxen in northeastern Alaska

      Reynolds, Patricia Claire Embry (1998)
      The restoration of muskoxen (Ovibos moschatus) to regions of former range in northeastern Alaska presented an opportunity to study population dynamics, seasonal patterns, and dispersal in an expanding population of ungulates. Muskoxen were returned to the Arctic National Wildlife Refuge (Arctic NWR) in 1969-70 after an absence of $>$100 years. In 1982-97, I used annual censuses, counts by sex and age, radio and satellite telemetry, and data from Landsat-TM maps to determine rates of population growth, changes in production, survival, and group size over time, seasonal habitat use, activity patterns, and dispersal of mixed-sex groups. In 1982-86, mixed-sex groups of muskoxen occupied the same regions as in 1977-81, but annual rates of increase and calf production declined (1977-81: rate = 0.24, 87 calves/100 adult females; 1982-86: rate = 0.14, 61 calves/100 adult females). In 1987-95, numbers of muskoxen in regions first occupied declined and stabilized at $<$300 animals as calf production continued to decline and mixed-sex groups dispersed into unoccupied regions. Survival of calves and yearlings did not decline over time. By 1995, about 800 muskoxen were distributed between the Itkillik River west of Prudhoe Bay, Alaska, and the Babbage River in northwestern Canada. In summer, female muskoxen occupied large core areas $(\bar x=223$ km$\sp2),$ and had high rates of movement $(\bar x=2.6$ km/day) and activity $(\bar x=18.9$ counts/min). In winter muskoxen remained in small core areas (mid-winter $\bar x=25$ km$\sp2)$ and reduced movements (mid-winter $\bar x=1.4$ km/day) and activity (mid-winter $\bar x=11.8$ counts/min.) possibly as a strategy to conserve energy. Muskoxen selected (use $>$ availability) riparian and moist sedge vegetation along rivers in all seasons. Dispersal of mixed-sex groups occurred infrequently through periodic pulses. Population density likely influenced patterns of dispersal through social interactions and habitat change. Weather conditions that affected the length of the growing season and availability of winter forage were major factors in the dynamics, distribution, and dispersal patterns of this reestablished population of muskoxen.
    • The ecology of age-1 copper rockfish (Sebastes caurinus) in vegetated habitats of Sitka Sound, Alaska

      Byerly, Michael M. (2001-12)
      Variables that may indicate habitat quality were measured to assess the relative value of shallow subtidal vegetated habitats to age-1 copper rockfish (Sebastes caurinus). All habitats studied appeared beneficial to fish with respect to the particular variable measured. Relative growth rate was significantly higher in kelp than in other habitats while energy content was highest in eelgrass. Though fish in eelgrass had lower growth rates, they were significantly larger, and had high densities. Mixed kelp and eelgrass habitat was suboptimal with respect to growth and energy content but also had high densities. Fish in mixed habitat moved the least both within and to other habitats while the opposite occurred in eelgrass. Diets were similar for fish in kelp and eelgrass habitats and daily ration did not differ significantly between habitats. Thus, observed differences in the variables measured were not related to food but may instead be dependent on non-exploitative interactions.
    • Ecology of birch litter decomposition and forest floor processes in the Alaskan taiga

      Wagener, Stephen Mitchell (1995)
      Our view of an ecological process is influenced by the scale of our hypotheses and experiments. The forest floor can be examined as a system, where processes that affect ecosystem carbon and nutrient cycling are controlled by macroscale variables (seasonal climatic changes), which in turn affect microscale controls over microbial activity. In the forest floor of Alaskan taiga, annual layers of Equisetum (horsetail) litter demarcate cohorts of birch litter. We collected samples of the forest floor monthly during September 1992, and in June-September 1993. Forest floor material was separated into each of the three most recent litter cohorts, plus the Oe layer, and the Oa layer. Overall, respiration potential decreased with depth of litter (litter age), but showed no change over time. Nitrogen mineralization potential increased with depth, and fluctuated over time. Microbial biomass did not vary with depth, but did increase greatly in September in conjunction with increased litter moisture. Litter C:N ratio decreased with time and varied with depth according to the year-to-year variation in litter quality. Our hypothesis that microbial activity on a particular litter cohort is a function of the litter quality, the vertical position of the litter in the forest floor, and the timing of the observation within seasonal macroclimatic cycles was supported. The distribution of some taxa of soil fauna correlated with depth. In these cases, the fauna were likely constrained mostly by differences in the microclimate of the forest floor strata. Other soil fauna varied over time, likely in response to differences in the microbial community. Yet other faunal distributions showed an interaction between depth and time, apparently responding to a combination of changes in microclimate and changes in food availability. The creatures that live in water pores may also have responded to an increase in habitat space as the top-most litter strata became wetter. "Cascading" microcosms containing material from these forest floor strata showed a temporary suppression of respiration by leachates from the newer litter on underlying forest floor material. Traditional litterbag techniques were also used to show changes in nitrogen that indicate winter microbial activity.