• Cofiring coal and biomass at Aurora Power Plant in Fairbanks, Alaska

      Wright, Zackery; Huang, Daisy; Nicholls, David; Peterson, Rorik; Schnabel, William (2016-05)
      Biomass energy has been a topic of great interest over the previous few years in Alaska; especially when various fuel sources were priced at a record high. Interior Alaska has the potential to utilize woody biomass to offset the use of coal in many of its power generating facilities. In this study, woody biomass in the form of clean aspen (Populus tremuloides) chips was cofired with Usibelli coal at the Aurora Power Plant facility in downtown Fairbanks, Alaska. Biomass was successfully cofired at low average rates of 2.4% and 4.81% of total energy value. Combustion gasses were analyzed using measuring probes in the exhaust stack. The 2.4% biomass test saw, on average, an increase in CO and CO₂ by 95ppm and 2%, respectively. A decrease in NOx of 1ppm was observed. During the 4.81% biomass test, CO increased by 83ppm, NOx decreased by 18ppm, and CO decreased by 1%. Opacity increased by 0.1% during the 2.4% biomass test and 0.17% during the 4.81% biomass test. The challenges facing a small scale facility in Interior Alaska are also presented. The testing exemplified that the use of biomass in stoker/grate boilers in Alaska is technically feasible with relative ease. No technical barriers to cofiring at low levels on an on-going basis were found at the Aurora Power Plant and this conclusion would likely hold true at similar facilities in interior Alaska.