• Assessing year to year variability of inertial oscillation in the Chukchi Sea using the wavelet transform

      Leonard, David (2016-05)
      Three years of ocean drifter data from the Chukchi Sea were examined using the wavelet transform to investigate inertial oscillation. There was an increasing trend in number, duration, and hence total proportion of time spent in inertial oscillation events. Additionally, the Chukchi Sea seems to facilitate inertial oscillation that is easier to discern using north-south velocity records rather than east-west velocity records. The data used in this analysis was transformed using wavelets, which are generally used as a qualitative statistical method. Because of this, in addition to measurement error and random ocean noise, there is an additional source of variability and correlation which makes concrete statistical results challenging to obtain. However, wavelets were an effective tool for isolating the specific period of inertial oscillation and examining how it changed over time.
    • Circulation and dynamics on the Northeastern Chukchi Sea Shelf

      Fang, Ying-Chih; Weingartner, Thomas J.; Winsor, Peter; Kowalik, Zygmunt; McDonnell, Andrew; Williams, William J. (2017-12)
      The circulation on the northeastern Chukchi Sea shelf is controlled by the poleward pressure gradient between the Pacific and Arctic Oceans. Local winds modulate the upper ocean and can rapidly alter the flow field. Present understanding of the circulation is largely based on subsurface measurements, but the response of near-surface currents to the slowly-varying secular pressure gradient and rapidly-varying local winds has not been addressed. I analyzed surface current data, extending more ~150 km offshore in the northeastern Chukchi Sea, collected from shore-based high-frequency radar systems (HFR) during the open water season. I find three wind-induced circulation regimes. Two of these are related to strong northeasterly winds when wind speeds approach or exceed 6 m s⁻¹ and the third results from infrequent northwesterly winds at >~6 m s⁻¹ . I find two dynamically different regions separated along ~71.5°N associated with hydrographic changes. North of 71.5°N the water column is strongly stratified due to cold and dilute ice meltwaters, whereas the water column to the south is much less stratified. These differences are reflected in the current response to the winds. I also adapted and refined an HFR data processing technique and developed an economical way to assess HFR-derived data quality, which is beneficial when using HFR data collected from networks having suboptimal coverage. I investigated the poorly understood circulation around Hanna Shoal. North of the Shoal there is a zonal gradient in the thermohaline and flow fields. The eastern side of the Shoal is strongly stratified year-round and vertically sheared unlike the western side, where the flow is steadily northeastward over the water column. Dense bottom waters flow clockwise around Hanna Shoal, but zonal convergence is implied in the upper water column north of the Shoal. The circulation is influenced by the distribution of late summer sea ice and by clockwise-propagating topographic waves.