• Quantifying upland boreal forest successional pathways near Fairbanks, Alaska

      Kurkowski, Thomas Andrew (2005-08)
      Previous studies have suggested that post-fire forest succession in Interior Alaska can occur in two different ways. Self-replacement occurs when pre-fire dominant species immediately replace themselves as the canopy dominants after fire. Species-dominance relay occurs when, after simultaneously establishing themselves after fire, deciduous trees relinquish canopy dominance to conifer species as the stand ages. The relative importance of these different successional processes at landscape scales in Interior Alaska is unknown. To test for the importance of these two trajectories, we built a multinomial logistic regression model explaining the relationship between classified vegetation type and topographic variables. We also determined the relative occurrence of species-dominance relay by comparing aged stands to known successional patterns. The model correctly predicted 78% of spruce distribution, and the majority of stands are not following the species-dominance relay pattern, implying that most of the study area appears to be following a self-replacement trajectory with only a small proportion of sites capable of supporting both deciduous and spruce species. These results have important implications for modeling forest succession in Interior Alaska because of the importance of these dynamics in determining the fire regime, carbon storage, and global warming scenarios.
    • Quantifying Variability In The Alaskan Black Spruce Ecosystem: Linking Vegetation, Carbon, And Fire History

      Hollingsworth, Teresa Nettleton; F. Stuart Chapin, III; Marilyn Walker (2004)
      The boreal forest is the largest terrestrial ecosystem in North America, one of the least disturbed by humans, and most disturbed by fire. This combination makes it an ideal system to explore the environmental controls over species composition, the relative importance of abiotic factors and floristic composition in governing ecosystem processes, and the importance of legacy effects at a large regional spatial scale. In the boreal region of interior Alaska, Picea mariana (black spruce) is the predominant tree species and spans a wide range of habitats, including north-facing slopes with permafrost, lowland bogs, and high dry ridge-tops. This research uses a combination of site description and analysis from both locally near Fairbanks (54) and across a large region and number of sites (146) to answer questions about the regional variability and biodiversity of the black spruce forest type. Based on the relationships between species composition and environmental factors, topography and elevation were the most important gradients explaining species composition locally in the Fairbanks region, and mineral soil pH was the overriding environmental gradient across interior Alaska. To describe the floristic variability, I separated the black spruce forest type into three floristically-based community types and five community subtypes. Variability in ecosystem properties among black spruce stands was as large as that documented previously among all forest types in the central interior of Alaska. The variability in plant community composition was at least as effective as environmental or abiotic factors and stand characteristics as a predictor of soil C pools in the black spruce forest type of interior Alaska. The variability in species composition at the community subtype-level was related to a combination of environmental factors and fire history. Together, these results provide a foundation for future work in black spruce ecosystems of interior Alaska, and contribute to our understanding of the regional variability and biodiversity of the black spruce forest type.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.
    • Quantity and quality of freshwater rearing habitat in relation to juvenile Pacific salmon abundance in the Kulukak River, Alaska

      Coleman, Jesse M.; Sutton, Trent; Zimmerman, Christian; Adkison, Milo (2012-12)
      Monitoring of freshwater habitat and its influence on stream-rearing fish is essential for recognizing and mitigating the impacts of human- and climate-induced changes. For the purposes of developing a monitoring program in the U.S. Fish and Wildlife Service Togiak National Wildlife Refuge, densities and habitat relationships of juvenile coho salmon Oncorhynchus kisutch and sockeye salmon O. nerka were estimated in two tributaries of the Kulukak River, Alaska, in July 2010. Multiple-pass depletion electrofishing was used to estimate density in a random sample of habitat units belonging to one of four categorical habitat classes. Regression methods were also used to quantify the physical habitat associations of juvenile coho and sockeye salmon density in the study areas. Densities of juvenile coho and sockeye salmon ranged from 0.22 fish-m⁻² in West Fork riffles and 0.05 fish·m⁻² East Fork riffles to 2.22 fish M⁻² and 1.32 fish-m⁻² in East Fork eddy drop zones (EDZ), respectively. The largest proportions of freshwater habitat were comprised of run (71 %) and EDZ habitats (44%) in the East Fork and West Fork, respectively. Regression coefficients for coho and sockeye salmon densities were positive with respect to proportional areas of in-stream overhanging vegetation (0.78 and 0.74, respectively), large wood (0.99 and 0.97, respectively), and undercut banks (0.99 and 0.02, respectively). Conversely, coho and sockeye salmon density was negatively related to depth ( -1.45 and -0.52, respectively) and velocity ( -2.45 and -1.67, respectively). Although substrate size was negatively related to sockeye salmon density ( -0.40), this variable had a weak positive relationship with coho salmon density (0.08). These findings suggest that EDZ habitats are important for juvenile coho and sockeye salmon during summer rearing and in-stream cover is an essential component of these rearing habitats.
    • Questing for friendship: a conversation analysis of Dungeons and Dragons

      Greenstreet, Brandon J. (2012-05)
      This study addresses the doing, of friendship, the dynamic, continuous, unpredictable and emergent process of relating, as described by the Dialectics of Friendship. Examining, segments of the talk among a small group of male friends playing, the role-playing game Dungeons and Dragons using the approach of conversation analysis, this study sought to determine the ways in which these friendship dialectics are evident in their utterance by utterance micro-level talk-in-interaction. The resources and practices they employ in interactionally achieving a number of different conversational actions as their talk unfolds were revealed and can be understood or interpreted as enactments of one or more of the contradictory poles of six dialectics, demonstrating empirically dialectical contradictions, the tensions between their polarities, and their interdependence and interaction with other dialectics arises emergently out of talk-in-interaction, and is taken up and negotiated by participants.
    • Quikscat measurements of the wind field over the Bering and Chukchi Seas

      Mull, Jeremy M.; Johnson, Mark; Weingartner, Tom; Simmons, Harper (2008-12)
      The purpose of this study is to investigate the dynamic wind field and resulting ocean circulation patterns in the Bering and Chukchi Seas. This region forms an important link in global ocean circulation as Bering Strait is a major conduit for water flowing into the Arctic Ocean. The Arctic has been identified as an area sensitive to climate change; thus it is vital to understand how water and energy flow through this region. We first quantify the differences between the winds measured in this region by the Quik Scatterometer (QuikSCAT) and those modeled by the National Centers for Environmental Prediction (NCEP). Although the data sets are well correlated, we find significant discrepancies between these data sets and use linear regressions to correct the NCEP data. The magnitudes of the NCEP wind components are greater than the magnitudes of the QuikSCAT wind components. This creates directional differences between the two data sets at low wind speeds and NCEP speeds that are greater than QuikSCAT speeds at high wind speeds. We next challenge the assumption that the wind field is spatially uniform over the Bering and Chukchi shelves. We produce mean monthly maps of the wind field, surface Ekman transport, and wind variance based upon the 12-hourly QuikSCAT data from July 1999 – May 2007. These maps reveal that the winds are spatially and temporally dynamic in this region. There are several areas and times in which surface Ekman transport is onshore or offshore near the coasts and may engender coastal downwelling and upwelling, respectively. There are also several instances when surface Ekman convergence and divergence may lead to Ekman pumping and suction. We use the entire NCEP record (January 1948 – May 2007) to examine patterns of surface Ekman transport across the shelf break. There was a significant increase in the amount of onshelf surface Ekman transport that coincided with the regime shift that occurred in the Bering Sea in the mid-1970s. We attempt to correlate the time series of surface Ekman cross-shelf transport with several climate indices but find only very weak correlations. The annual surface Ekman freshwater fluxes across the shelf break are iii calculated and found to be very small compared to the total annual freshwater fluxes calculated by Aagaard et al. (2006) and Kinney et al. (2008). To resolve the dominant modes of wind variability we compute hourly, monthly, and annual Complex Empirical Orthogonal Functions (CEOFs) with the QuikSCAT and NCEP data sets. The first modes in each analysis account for more than 60% of the variance. Different aspects of the mode amplitude time series are cross-correlated with climate and indices to produce small but significant correlation coefficients. Finally we calculate Ekman pumping and suction at four locations in the Bering Sea during the spring and summer months of seven years (2000 – 2006). We identify regions and times when Ekman pumping and suction were particularly strong, and perform several runs of a one-dimensional Price-Weller-Pinkel (PWP) vertical mixing model with the QuikSCAT winds, the QuikSCAT winds and a wind-stress-curl term, and the NCEP winds. The results suggest that Ekman suction might facilitate subsequent vertical mixing while Ekman pumping might inhibit subsequent vertical mixing when the winds are generally weak and wind-stress-curl is moderate or strong. The temporal resolution of the QuikSCAT data set is too low to resolve inertial motions at high latitudes. The NCEP data set has higher temporal resolution and is adequate for running the model within this region. We propose interpolating the hourly NWS data collected at St. Paul Island (station PASN) to the QuikSCAT grid using the complex amplitudes and phases from the complex cross-correlations between the two data sets to produce a data set of high temporal and spatial resolution. This would enable researchers to accurately resolve inertial motions and compute wind-stress-curl.
    • Quliangnanek litnauwilita - Let's teach through stories

      Branson, Candace; Siekmann, Sabine; Peter, Hishinlai'; Thorne, Steve; Drabeck, Alisha (2015-12)
    • Quliriuralta (Lets keep telling stories): pace model with traditional Yup'ik storytelling in a second grade dual language classroom

      Wassilie, Irene M.; Siekmann, Sabine; Martelle, Wendy; Patterson, Leslie; Samson, Sally (2019-12)
      This research was conducted in a setting where the students are losing their Indigenous language. It is centered around the retention and revitalization of the Yugtun language. The goal of the research was to gain insights into how second graders in a dual language enrichment school constructed meaning and focus on form in their classroom. The instructional model employed as part of this investigation is the PACE Model, which is a story-based approach to teaching grammar through focus on form with an emphasis on meaning making. The model is consistent with Indigenous oral storytelling, cultural values, traditions and expectations. The study involves myself and fourteen second graders in Napaskiak, Alaska. ZJW Memorial School is one of 28 schools in the Lower Kuskokwim School District. Of these fourteen students, only one spoke Yugtun as his first language. The others were immersed into Yugtun as a second language. I implemented the PACE approach over the course of 25 days. Data was gathered through field notes, student artifacts, video and audio recordings. The data reveals that meaning making and building background knowledge can be a challenge for both teacher and students. It also reveals that the teacher should be implementing multimodal approaches to build comprehensible input so that students may produce output in the target language.
    • Quliriyaraq: storytelling using the pace model

      Strunk, Dora Emma Apurin; Martelle, Wendy; John, Theresa; Siekmann, Sabine (2015-12)
    • Rabies Virus In Arctic Fox (Vulpes Lagopus): A Study Of Pantropic Distribution

      Gildehaus, Lori A.; Runstadler, Jonathan (2010)
      Rabies is endemic in Arctic foxes, in Alaska and other Arctic regions and cold temperatures may preserve the virus in Arctic climates in infected animal carcasses. These frozen carcasses may provide a source of infection throughout winters and thereby propagate the rabies virus within animal populations in the Arctic. It was hypothesized that rabies virus antigen is present in the soft tissues of naturally infected Arctic foxes, Vulpes lagopus. Using a direct rapid immunohistochemistry test (DRIT) and a fluorescent antibody test (FAT), thirteen organ tissues from twelve naturally infected and three experimentally infected Arctic foxes were tested. All tissues, except testes, tested positive for rabies virus antigen by the DRIT, the FAT, or both in at least one fox. Although the DRIT detected rabies virus antigen in non-neuronal tissues, it did not detect antigen in as many non-neuronal tissues as the FAT. Spleen and stomach tissues had the highest rate of rabies virus detection by the FAT and using a combination of non-neuronal tissues would be the best substitute for brain if brain were unavailable.
    • Radar studies of turbulence and lidar studies of the nickel layer in the Arctic mesosphere

      Li, Jintai; Collins, Richard L.; Simpson, William R.; Newman, David E. (2016-05)
      This thesis presents studies of the Arctic middle atmosphere using Incoherent Scatter Radar (ISR) and resonance lidar at Poker Flat Research Range (PFRR), Chatanika, Alaska. The Poker Flat Incoherent Scatter Radar (PFISR) provides measurements of mesospheric turbulence and the resonance lidar provides measurements of mesospheric nickel layer. We develop retrieval and analysis techniques to determine the characteristics of the turbulence and the nickel layer. We present measurements of mesospheric turbulence with PFISR on 23 April 2008 and 18 February 2013. We characterize mesospheric turbulence in terms of the energy dissipation rate as a function of altitude and time on these days. We present an extensive analysis of the radar measurements to show that the use of high quality PFISR data and an accurate characterization of the geophysical conditions are essential to achieve accurate turbulent measurements. We find that the retrieved values of the energy dissipation rate vary significantly based on how the data is selected. We present measurements of mesospheric nickel layer with resonance lidar on the night of 27-28 November 2012 and 20-21 December 2012. We characterize the mesospheric nickel layer in terms of the nickel concentration as a function of altitude on these days. We find that our nickel concentrations are significantly higher than expected from studies of meteors. We present an extensive analysis of the lidar measurements to show that these measurements of unexpectedly high values of the nickel concentrations are accurate and not biased by the lidar measurements.
    • Radial and azimuthal dynamics of the io plasma torus

      Copper, Matthew; Delamere, Peter; Ng, Chung-Sang; Otto, Antonius (2015-05)
      The moon Io orbits Jupiter emitting neutral particles from its volcanic surface. This emission is ionized and forms the Io plasma torus around Jupiter. The variation of conditions at Io and Jupiter lead to variations in the content of the plasma in the torus. Volcanoes on Io's surface erupt and change the rate of neutral input. Hot electrons (30-100 eV), whose abundances vary in azimuth, create highly ionized species. Radial variation in subcorotation velocities, velocities less than than that of the motion of the dipole magnetic field, creates shears while maintaining coherent radial structure in the torus. Poorly understood changes in plasma density circulate through the torus creating the anomalous System IV behavior that has a period slightly longer than the rotation of Jupiter's magnetic field. This thesis summarizes the research that has produced a two-dimensional physical chemistry model, tested several existing theories about subcorotation velocities, System IV variation, and hot electrons, and adopted new methods of Io plasma torus analysis. In an attempt to understand important dynamics, the thesis modeled differing scenarios such as an initialized two-peak structure, a subcorotation profile dictated by mass loading and ionospheric conductivity, and a critical combination of two populations of hot electrons that accurately mimics the observed System IV phenomenon. This model was also used to solve the inverse problem of determining the best fit for the model parameters, neutral source input rate and radial transport rate, using observations of density, temperature, and composition. In addition the thesis shows the need for multi-dimensional modeling and the results from its groundbreaking two-dimensional model.
    • Radiation transport in cloudy and aerosol loaded atmospheres

      Kylling, Arve; Stamnes, Knut; Shaw, Glenn E.; Weeks, Wilford W.; Rees, Manfred H.; Smith, Roger W. (1992)
      The equation for radiation transport in vertical inhomogeneous absorbing, scattering, and emitting atmospheres is derived from first principles. It is cast in a form amenable to solution, and solved using the discrete ordinate method. Based on the discrete ordinate solution a new computationally efficient and stable two-stream algorithm which accounts for spherical geometry is developed. The absorption and scattering properties of atmospheric molecules and particulate matter is discussed. The absorption cross sections of the principal absorbers in the atmosphere, H$\sb2$O, CO$\sb2$ and O$\sb3,$ vary erratically and rapidly with wavelength. To account for this variation, the correlated-k distribution method is employed to simplify the integration over wavelength necessary for calculation of warming/cooling rates. The radiation model, utilizing appropriate absorption and scattering cross sections, is compared with ultraviolet radiation measurements. The comparison suggests that further experiments are required. Ultraviolet (UV) and photosynthetically active radiation (PAR) is computed for high and low latitudes for clear and cloudy skies under different ozone concentrations. An ozone depletion increases UV-B radiation detrimental to life. Water clouds diminish UV-B, UV-A and PAR for low surface albedos and increase them for high albedos. The relative amount of harmful UV-B increases on overcast days. The daily radiation doses exhibit small monthly variations at low latitudes but vary by a factor of 3 at high latitudes. Photodissociation and warming/cooling rates are calculated for clear skies, aerosol loaded atmospheres, and atmospheres with cirrus and water clouds. After major volcanic explosions aerosols change O$\sb3$ and NO$\sb2$ photodissociation rates by 20%. Both aged aerosols and cirrus clouds have little effect on photodissociation rates. Water clouds increase $(\sim$100%) photodissociation rates that are sensitive to visible radiation above the cloud. Solar warming rates vary by 50% in the stratosphere due to changing surface albedo. Water clouds have a similar effect. The net effect of cirrus clouds is to warm the troposphere and the stratosphere. Only extreme volcanic aerosol loadings affect the terrestrial warming rate, causing warming below the aerosol layer and cooling above it. Aerosols give increased solar warming above the aerosol layer and cooling below it.
    • Radiation transport in the atmosphere - sea ice - ocean system

      Jin, Zhonghai; Stamnes, Knut; Lynch, Amanda; Rees, Manfred H.; Shaw, Glenn E.; Tsay, Si-Chee; Weeks, Wilford F. (1995)
      A comprehensive radiative transfer model for the coupled atmosphere-sea ice-ocean system has been developed. The theoretical work required for constructing such a coupled model is described first. This work extends the discrete ordinate method, which has been proven to be effective in studies of radiative transfer in the atmosphere, to solve the radiative transfer problem pertaining to a system consisting of two strata with different indices of refraction, such as the atmosphere-ocean system and the atmosphere-sea ice-ocean system. The relevant changes (as compared to the standard problem with constant index of refraction throughout the medium) in formulation and solution of the radiative transfer equation, including the proper application of interface and boundary conditions, are presented. This solution is then applied to the atmosphere-sea ice-ocean system to study the solar energy balance in this coupled system. The input parameters required by the model are observable physical properties (e.g., the profiles of temperature and gas concentrations in the atmosphere, and the profiles of temperature, density, and salinity in the ice). The atmosphere, sea ice and ocean are each divided into a sufficient number of layers in the vertical to adequately resolve changes in their optical properties. This model rigorously accounts for the multiple scattering and absorption by atmospheric molecules, clouds, snow and sea water, as well as inclusions in the sea ice, such as brine pockets and air bubbles. The effects of various factors on the solar energy distribution in the entire system have been studied quantitatively. These factors include the ice salinity and density variations, cloud microphysics as well as variations in melt ponds and snow cover on the ice surface. Finally, the coupled radiative transfer model is used to study the impacts of clouds, snow and ice algae on the light transport in sea ice and in the ocean, as well as to simulate spectral irradiance and extinction measurements in sea ice.
    • Radiative transfer modeling in the coupled atmosphere-ocean system and its application to the remote sensing of ocean color imagery

      Yan, Banghua; Stamnes, Knut; Nielsen, Hans; Watkins, Brenton; Olson, John (2001-08)
      Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called 'atmospheric correction.' Since about 90% of the radiance received by the satellitee sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since Atmospheric aerosols consist of a mixture of absorbing and non-absorbing components that may or may not be soluble, it becomes a challenging task to model the radiative effects of these particles. It is shown that the contribution of these particles to the TOA radiance depends on the assumptions made concerning how these particles mix and grow in a humid environment. This makes atmospheric correction a very difficult undertaking. Air bubbles in the ocean created by breaking waves give rise to scattered light. Unless this contribution to the radiance leaving the ocean is correctly accounted for, it would be mistakenly attributed to chlorophyll pigments. Thus, the findings in this thesis make an important contribution to the development of an adequate radiative transfer model for the coupled atmosphere-ocean system required for development and assessment of algorithms for atmospheric correction of ocean color imagery.
    • Radiowave Scattering Structure In The Disturbed Auroral Ionosphere: Some Measured Properties

      Fremouw, Edward Joseph; Philip, K.; Parthasarathy, R.; Tryon, J.; Owren, L. (1966)
    • A rain of dust

      Gaskin, Jefferson Arthur (2005-05)
      A Rain of Dust is a metaphor of confrontation, a facing of the enormous mystery of what it means to be born, to live, to die. Rather than attempt to find meaning, this collection celebrates the centrality of created meaning; Love and Hate, Good and Evil, Connection and Alienation, Life and Death are all presented as subjective spokes on a wheel with Art at its hub. As such, these poems are no more and no less than an expression of what it is to be Jefferson Arthur Gaskin, 32, struggling poet, lover of spooky women, kung-fu films, and robots, making his way from the swamps of Houston, Texas, to the frozen fields of Fairbanks, Alaska, and grasping at memories, fantasies, visions and dreams all along the way.
    • Rainsong in sawdust

      Wharton, Matthew Eric (2004-05)
      The fabric of this novel arises from the burnt pages of Gogol's Dead Souls. It explores the metaphor of water, in all its forms, as life. Joe Hennessy is a high school dropout working construction in Lake Tahoe. Catholic shame spins his mind into Mandelbrot sets of unrealizable responsibilities toward his family. A crisis occurs when his sister forces him to start over in a new place. We hear the hush of snow, the smoothness of water and the approach of the saw blade.