• Dungeness crab depth distribution: effects of sea otters

      Scheding, Karen A. (2004-05)
      The distribution and abundance of Dungeness crabs in the Glacier Bay area were observed with a submersible in five bays with and three bays without sea otters. A matrix design was used with three levels of sea otter occupation and three depth categories. Goals of this study were to determine: 1) the depth distribution of crabs; 2) if depth was a refuge from sea otter predation; and, 3) the habitat of ovigerous female aggregations. Scuba was used to calibrate submersible counts and collect substrate samples; crab pots were used to confirm submersible sightings. Abiotic and biotic variables were analyzed to interpret distribution data and aggregation sites. A regional, long-term crab survey dataset was also examined. Sea otters may have decreased crab abundance in shallow waters. Two aggregations of ovigerous Dungeness crabs were observed in shallow water with sand substrate. However, only 1% of the 33 km of transects were classified as sand, suggesting that sand may be a limiting resource. No conclusions could be made about the independent effects of sea otter presence or depth due to strong interaction. Submersible observations, crab pot surveys, and marine topography together however, point towards a shift in crab depth distribution with sea otter presence
    • Dying intestate or with a will on toxic estate? an evaluation of petroleum fiscal systems and the economic and policy implications for decommissioning of onshore crude oil fields in Nigeria

      Afieroho, Erovie-Oghene Uyoyou-karo; Patil, Shirish L.; Dandekar, Abhijit; Reynolds, Douglas B.; Perkins, Robert (2018-05)
      Many giant fields in the world like the onshore fields in Nigeria which were initially discovered over half a century ago, have begun to see consistent decline in production and profit, and are gradually entering into the economic end of field life or decommissioning phase. Characteristically, in most regions with mature fields, the large multinational oil companies have begun to sell their oil fields to small indigenous companies who may not be financially robust enough to complete the decommissioning, when it occurs. Because of the pervasive societal impact of the oil industry, if an investor fails to properly decommissioning the infrastructure, a responsible government will have to pay for the proper decommissioning, else society will suffer the socioeconomic, political, health and environmental impact. Therefore, society needs to be effectively engaged in the development of a sustainable decommissioning policy framework, which is hindered if society is uninformed and lacks access to pertinent information. Currently, there is abysmal information in the public space on the cost of decommissioning liabilities of oil fields, especially in developing countries like Nigeria. The public also need simple interpretative ways to determine the vulnerability of a county or entity to decommissioning default risk and the imminence of a default risk. Furthermore, there is currently, no way to benchmark the level of maturity or level of preparedness for decommissioning phase such that countries and entities can identify their gaps to a sustainable decommissioning policy framework and define a roadmap to close the gaps. These are important challenges to vigorous public participation, which is an essential requirement for development and implementation of any sustainable public policy for a public issue like decommissioning of crude oil fields. This study adopted several research methods to develop and introduce a new cost estimating methodology that uses publicly declared cost of asset retirement obligations (ARO) to determine a plausible cost estimate range for decommissioning liabilities. It was demonstrated with Nigeria onshore crude oil fields, which it determined to have a rough order of magnitude cost estimate for decommissioning liabilities that could be as high as $3 billion. Secondly, it also introduced decommissioning coverage ratio (DCR) and decommissioning coverage ratio vector (DCRV) as new metrics to evaluate the vulnerability to and imminence of decommissioning default risk. In demonstrating these new metrics, this study determined that the imminence of and vulnerability to decommissioning default risk for the onshore crude oil fields in Nigeria, with respect to any of the available revenue streams, is high. Thirdly, it developed a graded scale maturity model for sustainable decommissioning of petroleum fields. The model described as Fairbanks maturity model for sustainable decommissioning in the petroleum industry, has five progressive levels of maturity. It leveraged the methodology used for similar maturity models developed in other industries and for business management, and a comparative analysis of level of progress in decommissioning frameworks between some countries with leading decommissioning experience in the petroleum industry, to develop the Fairbanks maturity model. Based on the Fairbanks maturity model, frameworks for sustainable decommissioning of Nigeria onshore crude oil fields were evaluated to be at Level 1, Ad hoc maturity level, which is the lowest maturity level. Recommendations to close the identified gaps were also were made. These methodologies can be applied to any petroleum producing region or entity in the world and are advancements to the frontier of knowledge in the management of decommissioning phase for petroleum fields in general and Nigeria onshore fields in particular.
    • Dynamic Assessment In A Yugtun Second Language Intermediate Adult Classroom

      Charles, Stephen Walkie; Siekmann, Sabine; Coles-Ritchie, Marilee; Brayboy, Bryan; Allen, James (2011)
      Dynamic Assessment is a new theoretical framework for language assessment, and it is particularly relevant for underrepresented languages and learners. For this study the process is investigated in the context of Yugtun second language learners at a university level. This qualitative teacher action research was a study that involved seven students enrolled in an intermediate Yup'ik language course and that comprised three DA sessions over the course of one semester. The intention in using DA was not to help learners do better on the tests but to understand their development in the language. The hope was that DA interactions would provide me with additional insights into learner knowledge and abilities while also helping them move toward more independent control over relevant features of the language. Assessments were organized as a two-stage process involving non-dynamic administration of chapter tests (targeting learner independent performance) followed by dynamic sessions. The dynamic sessions were conducted as 15-minute one-on-one interactions between each learner and the instructor the week after the tests. In order to gauge the students' ability to self-identify and correct their mistakes, their original static test was returned to them at the outset of the meeting without any corrections or grade. Students then corrected items directly on their test and were free to interact with instructor, asking questions, requesting specific forms of help, discussing problems, and so forth. Following the tenets of interactionist DA, the mediator set out with more implicit feedback and becoming more explicit as needed. However, no specific protocol was established prior to the dynamic sessions, in order to let interactions follow whatever course was needed to meet learner needs. Unassisted performance during the non-dynamic administration therefore reveals the students' actual level of development, while the dynamic session provided more in-depth understanding into the problems behind their performance and how close they were to gaining full control of the grammatical features in question. In addition, the quality of the instructor's interactions with learners served as individualized tutoring to further support their abilities. An additional data source that further highlights the study is the dialogue journal that each participant maintained. Journal-writing was incorporated as part of the assignments in the Yugtun course. I read and responded to journal entries weekly. Students were encouraged to ask questions and share their perspective of their learning and assessment experiences and to express themselves in the language of their choice. I responded to direct and indirect questions, offered praise and support, and gave corrective language feedback only when explicitly requested to by the learners. As will be made clear, dialogue journals also helped me identify learner struggles while tracking progress over time.
    • Dynamic Modeling Of The Hydrologic Processes In Areas Of Discontinuous Permafrost

      Bolton, William Robert; Hinzman, Larry (2006)
      The overarching hypothesis of this dissertation is "in the sub-arctic environment, the presence or absence of permafrost is dominant influence on hydrologic processes." The presence or absence of permafrost is the defining hydrologic characteristic in the sub-arctic environment. Discontinuous permafrost introduces very distinct changes in soil hydraulic properties, which introduce sharp discontinuities in hydrologic processes and ecosystem characteristics. Hydraulic properties vary over short and long time scales as the active layer thaws over the course of a summer or with changes in permafrost extent. The influence of permafrost distribution, active layer thaw depth, and wildfire on the soil moisture regime and stream flow were explored through a combination of field-based observations and computer simulations. Ice-rich conditions at the permafrost table do not allow significant percolation of surface waters, which result in saturated soils near the ground surface and limited subsurface storage capacity, compared to well-drained non-permafrost sites. The removal of vegetation by wildfire results in short-term (<10 years) increases in moisture content through reduced evapotranspiration. Long-term (>10 years) drying of soils in moderate to severe wildfire sites is the result of an increased active layer depth and storage capacity. A spatially-distributed, process-based hydrologic model, TopoFlow, was modified to allow spatial and temporal variation in the hydraulic conductivity and porosity of soils. By continual variation of the hydraulic conductivity (proxy for permafrost distribution and active layer thaw depth) and porosity (proxy for storage capacity), the dynamic soil properties found in the sub-arctic environment are adequately represented. The sensitivity of TopoFlow to changes in permafrost condition, vegetation regime, and evapotranspiration is analyzed. The net result of the field observations and computer simulations conducted in this research suggest the presence or absence of permafrost is the dominant influence on soil moisture dynamics and has an important, but secondary role in the stream flow processes.
    • Dynamic simulator for a grinding circuit

      Srivastava, Vaibhav; Ganguli, Rajive; Ghosh, Tathagata; Akdogan, Guven; Darrow, Margaret (2017-08)
      The grinding circuit is a primary and indispensable unit of a mineral processing plant. The product from a grinding circuit affects the recovery rate of minerals in subsequent downstream processes and governs the amount of concentrate produced. Because of the huge amount of energy required during the grinding operation, they contribute to a major portion of the concentrator cost. This makes grinding a crucial process to be considered for optimization and control. There are numerous process variables that are monitored and controlled during a grinding operation. The variables in a grinding circuit are highly inter-related and the intricate interaction among them makes the process difficult to understand from an operational viewpoint. Modeling and simulation of grinding circuits have been used by past researchers for circuit design and pre-flowsheet optimization in terms of processing capacity, recovery rate, and product size distribution. However, these models were solved under steady approximation and did not provide any information on the system in real time. Hence, they cannot be used for real time optimization and control purposes. Therefore, this research focuses on developing a dynamic simulator for a grinding circuit. The Matlab/Simulink environment was used to program the models of the process units that were interlinked to produce the flowsheet of a grinding circuit of a local gold mine operating in Alaska. The flowsheet was simulated under different operating conditions to understand the behavior of the circuit. The explanation for such changes has also been discussed. The dynamic simulator was then used in designing a neural network based controller for the semi-autogenous mill (SAG). A two-layer non-linear autoregressive (NARX) neural network with feed to the mill as exogenous input was designed using data generated by the simulator for a range of operating conditions. Levenberg-Marquardt (LM) and Bayesian Regularization (BR) training algorithms were used to train the network. Comparison of both algorithms showed LM performed better provided the number of parameters in the network were chosen in a prudent manner. Finally, the implementation of the controller for maintaining SAG mill power to a reference point is discussed.
    • Dynamics of a migratory fish population with applications to the management of sablefish in the Northeast Pacific Ocean

      Heifetz, Jonathan; Quinn, Terrance J. II (1996)
      Quantitative models are developed to describe the dynamics of an age-structured migratory fish population subject to exploitation. Migration rates are quantified, alternative ways of apportioning harvest among areas are examined, and the dynamics of a migratory population is described within the general theoretical framework of a projection matrix model. Application of these modeling efforts is within the context of the sablefish (Anoplopoma fimbria) fishery in the North Pacific Ocean. A Markov model that includes natural and fishing mortality, tag reporting and shedding rates, and migration is used to quantify migration rates of tagged sablefish among fishery regulatory areas. Estimates of annual migration rates out of an area are in the range 19-69% for small (<57 cm fork length (FL)), 25-72% for medium (57-66 cm FL), and 27-71% for large (>66 cm FL) sablefish. The predominant direction of migration along the continental slope is eastward for large sablefish and westward for small sablefish. Most estimates of migration are precise, unconfounded, and robust to perturbations of input constants. An age-structured model that includes migration is constructed to examine harvest policies for sablefish. Areal estimates of yield-per-recruit depends on the geographic distribution of recruitment. In general, when evaluated under the current annual exploitation rate of 10%, apportioning harvest among areas based on areal estimates of biomass and apportionment based on the steady-state distribution of biomass give similar results. A policy of apportionment based on a weighted moving average of areal estimates of available biomass is preferred to others. This policy adapts to current information about geographic distribution of biomass, reduces the effects of measurement error, and does not require estimates of migration probabilities for implementation. The reproduction, mortality and migration of an age-structured fish population are incorporated into a projection matrix model. The model is parameterized to include areal specificity in the stock-recruitment relationship and events such as larval dispersion that is decoupled from local reproduction. For the sablefish fishery where direction of movement is age dependent, fishing at a common rate among areas may be detrimental to the population in a given area. Area-specific fishing strategies can be devised to meet management objectives such as maintenance of areal spawning potential.
    • Dynamics of nutrient cycling on postharvested white spruce sites in interior Alaska

      Pare, David (1990)
      Various field and laboratory methods were used to characterize nutrient cycling on two mature white spruce sites, one recently harvested site and three 14-year-old harvested white spruce sites colonized by different plant communities and presenting different intensity of soil disturbance. Study sites were chosen on upland south facing sites and presented conditions of reduced environmental variability. Soil analysis showed no changes in pools of soil nutrient unless the forest floor was removed. On the other hand, some differences in the dynamics of nutrients were seen: (1) sites where the forest floor was removed showed low N mineralization rates; (2) N mineralization rates appeared faster in the surface soil of the recently harvested site than in mature white spruce sites; (3) the surface soil of sites regenerating to aspen showed the highest N mineralization rates of all 14-year-old sites. Field soil temperature, and field soil moisture content as well as N and lignin concentrations of the forest floor could not explain the differences in N mineralization rates between sites. This suggests that species colonization may influence N dynamics and that N cycling rate on regenerating sites is controlled by a small pool of rapidly cycling N. The determination of nutrient uptake and return by vegetation growing in the field indicated that nutrient cycling was much faster in 14-year-old aspen stands than on any other regenerating or mature site. The measurement of element availability with ion exchange resin bags indicated an increased leaching of nitrate, phosphate and sulfate at springtime, the second summer following harvesting. Poor correlations were obtained between conventional soil testing and ion exchange resin bag determinations. Comparisons between field and laboratory nutrient availability indices indicated that sites colonized by sprouting aspen exhibited the highest N cycling rates seen in this study. This observation makes aspen an interesting species to consider for mixed species management strategies.
    • Dynamics of the 240 A.D. caldera-forming eruption of Ksudach Volcano, Kamchatka, Russia

      Andrews, Benjamin James (2004-08)
      The Ksudach Volcano KS-1 rhyodacite deposits offer an opportunity to study eruption dynamics and plume stability during a caldera-forming eruption. Stratigraphic relations indicate four phases of eruption, Initial, Main, Lithic, and Gray. Well-sorted, reverse-graded pumice fall deposits overlying a silty ash compose the Initial phase layers. The Main, Lithic and Gray phases are represented by pumice fall layers interbedded with pyroclastic flow and surge deposits (proximally) and co-ignimbrite ashes (distally). Although most of the deposit is <30 wt.% lithics, the Lithic phase layers are>50wt.% lithics. White and gray pumices are compositionally indistinguishable, however vesicle textures and microlite populations indicate faster ascent by the white pumices prior to the Gray phase. The eruption volume is estimated as 7.5 km³ magma (dense rock equivalent) and 2.4 km³ lithics. Isopleth maps indicate mass discharge rates (MDR) ranged from 5-10x10⁷ kg/s in the Initial phase to> 10⁸ kg/s in the Main, Lithic, and Gray phases. Stratigraphic, granulometric, and component analyses indicate simultaneous eruption of buoyant plumes and non-buoyant flows during the Main, Lithic and Gray phases. Caldera collapse during the Lithic phase is reflected by a large increase in lithic particles and the textural change from white to gray pumices; collapse occurred after eruption of 2/3 of the magma.
    • Dynamics of the fur trade on the middle Yukon River, Alaska, 1839 to 1868

      Arndt, Katherine Louise; Black, Lydia T. (1996)
      This study examines the Russian-era fur trade of the middle course of the Yukon River, that section of the river which extends from Fort Yukon down to Nulato, Alaska. For a period of just over twenty years, 1847 to 1868, the Russian-American and Hudson's Bay companies maintained rival establishments at opposite ends of this stretch of river and vied for the trade of the Native populations living in the region between. After reviewing the events leading up to the establishment of the first European posts in the region, the study focuses on the dynamics of the competition between the rival posts and the changing nature of Native, Russian, and British participation in the middle Yukon trade. Most historical summaries of the early (pre-1867) fur trade of the Middle Yukon rely upon a small number of published sources, resulting in a truncated and rather inaccurate version of the region's fur trade history. This study seeks to overcome that problem through utilization of two major archival collections, the records of the Russian-American and Hudson's Bay companies. Together, these sources make possible an account that is more even in temporal coverage and more balanced in its treatment of Russian, British, and Native trade activities. One of the striking features of the early Yukon drainage fur trade is the pivotal role of the Native traders in determining its spatial patterning. Though regional patterns were characterized by a certain overall stability in the period 1830 through 1868, they also underwent marked change. This study examines those changes with regard to the middle Yukon drainage and discusses the influence of material and social factors upon them.
    • Dynamics simulation of human box delivering task

      Owens, Paul Davis; Xiang, Yujiang; Peterson, Rorik; Chen, Cheng-fu (2018-05)
      The dynamic optimization of a box delivery motion is a complex task. The key component is to achieve an optimized motion associated with the box weight, delivering speed, and location. This thesis addresses one solution for determining the optimal delivery of a box. The delivering task is divided into five subtasks: lifting, transition step, carrying, transition step, and unloading. Each task is simulated independently with appropriate boundary conditions so that they can be stitched together to render a complete delivering task. Each task is formulated as an optimization problem. The design variables are joint angle profiles. For lifting and carrying task, the objective function is the dynamic effort. The unloading task is a byproduct of the lifting task, but done in reverse, starting with holding the box and ending with it at its final position. In contrast, for transition task, the objective function is the combination of dynamic effort and joint discomfort. The various joint parameters are analyzed consisting of joint torque, joint angles, and ground reactive forces. A viable optimization motion is generated from the simulation results. It is also empirically validated. This research holds significance for professions containing heavy box lifting and delivering tasks and would like to reduce the chance of injury.
    • Dynamo action in the ionosphere and motions of the magnetospheric plasma

      DeWitt, Ronald N. (1965-05)
      This thesis presents a study of the dynamic interaction which takes place between the magnetospheric plasma and the underlying neutral atmosphere; it is hoped thus to g a m a better understanding of the effects of this interaction upon the steady state configuration of the magnetosphere. The neutral portion of the atmosphere (the neutrosphere) and the overlying ionized regions (the upper atmosphere and magnetosphere) may be regarded as two distinct dynamic domains that interact in a region of transition occurring between 100 and 150 km over the earth. The neutrosphere because of its greater mass will dominate the motion, and the magnetospheric plasma can be expected to undergo motions related to those of the upper neutrosphere and transition region. However, the geomagnetic field restricts the motion of the magnetospheric plasma to a particular class, allowing one to consider the magnetospheric motion to be constrained. Motions in the transition region of the class not permitted the magnetospheric plasma will give rise to forces against the constraint. The reaction of the constraint on the atmosphere of the transition region takes the form of a Lorentz force x B where J is the current responsible for the well known solar quiet day daily magnetic variation (Sq). The explanation for the production of this current in the transition region has traditionally been presented in terms of a dynamo-like electromotive force generated by motions of the conducting atmosphere through the magnetic field, whence the transition region is aptly named the dynamo region. The Lorentz force represented by this current constitutes a significant term in the equation of motion for the dynamo region. Another important term arises from eddy viscous stresses immediately below the dynamo region. The equation of motion for the dynamo region must thus include such forces as well as the pressure gradient and Coriolis terms. However, our almost total ignorance of the eddy viscous stress field at the lower surface of the dynamo layer at present precludes our deducing the entire dynamo layer winds from the observed Sq magnetic variation. The kinematics of the dynamo layer are discussed and the motion or the dynamo layer is divided into a symmetric and an antisymmetric part. The term symmetric is here used to describe winds in the northern and southern hemisphere that are the mirror images of each other with respect to the equatorial plane. It is demonstrated that the symmetric component gives rise to electrostatic fields transverse to the field lines, but to no currents along the field lines, while the antisymmetric case produces the converse effects. The symmetric and antisymmetric winds ape further divided into components according to the horizontal electromotive force they produce. (a) Symmetric Wind In the case of the symmetric wind, only the portion of the wind producing the solenoidal component of the horizontal dynamo electromotive force is effective in producing ionospheric currents. It is demonstrated that only this current producing wind system acts against the constraints imposed by the geomagnetic field on magnetospheric motions. The motion of the magnetospheric plasma driven by each such wind system is discussed. The earlier treatments of the dynamo theory consider the dynamo region to be a single layer in which the wind system and the electric conductivity are assumed to be uniform in height. A new, more general derivation of the layer's dynamo action is given in which no restrictions are placed upon the vertical distributions. An effective wind is defined which permits the use of the earlier equations relating the current function, the electrostatic field, and the scalar field describing the current producing part of the effective wind. The equation relating the electrostatic field and the current function is essentially that employed by Maeda (1956), allowing his solution for the portion of the electrostatic field associated with the current producing wind to remain unaffected by the stratification of the wind system. Mathematical techniques for solving the dynamo equations for the elecrostatic field are developed. These allow for a quite general conductivity distribution over the globe, only requiring that it be expressible in surface harmonics. The effect of undetected zonal currents upon the solution for the electrostatic field is discussed. It is suggested that a considerable diurnal component of electrostatic field and other components as well may be hidden from us by our inability to detect the prevailing magnetic perturbations produced by zonal currents. The electrostatic field associated with the non-current producing components of the symmetric wind is likewise hidden from us. (b) Antisymmetric Wind The equations for the current driven by the antisymmetric component of wind are derived, and some of the effects of such currents are discussed. It is found that the conduction of current along the field lines from one hemisphere to the other is associated with an interhemispheric stress between geomagneticaliy conjugate points of order 3 x 10⁻⁷ newtons/meter². In addition it is found that an antisymmetric layer current density of 5 amperes/km into the polar cap region (across the 75° latitude circle) might give rise to a displacement of about 150 km in the relative position of the conjugate points defined by field lines of the magnetospheric tail. It is suggested that the dynamo action in the 100 to 150 km height plays a role in determining the manner in which the magnetosphere divides itself into the corotating region and the magnetospheric tail.
    • Early height growth patterns of planted white spruce seedlings in Interior Alaska

      Hollingsworth, Jamie (2002-05)
      This study looked at early height growth of planted white spruce Picea glauca (Moench) Voss around the Fairbanks area. The effort focused on two Levels-of-Growing-Stock (LOGS) experimental plantations located in the Bonanza Creek Experimental Forest that incorporated an espacement study. Annual total height was also measured on 16 operational plantations and then compared to LOGS plantations. Average annual total height at Site 2 of the LOGS plantations was significantly greater than at Site 1. A significant difference in height growth between these sites was attributed to differences in aspect. Results showed significant annual total height differences among the espacement plots within the LOGS plantation. The narrowest spacing 1.2 X 1.2 m and widest spacing 3.7 X 3.7 showed a lower annual total height while spacings 1.8 X 1.8 m, 2.4 X 2.4 m, and 3.0 X 3.0 m showed a greater annual total height at age ten. The range of annual total height found at the LOGS sites was not significantly different than the range of annual total height found at the 16 operational plantations. Additionally, path analysis was used to quantify the direct and indirect effects of multiple environmental variables (i.e., percent slope, slope position, competition, aspect, and soil moisture) on growth rate at the operational plantations. It was found that slope position, percent slope, and competition had significant direct effects on growth rate. These results provide insight for resource managers when predicting the height growth of planted white spruce.
    • Early Life History Dynamics Of Lake Sturgeon

      Caroffino, David C. (2009)
      Populations of lake sturgeon Acipenser fulvescens in the Laurentian Great Lakes have not recovered after dramatic declines in the late 1800s despite the implementation of numerous recovery plans. Although extensive lake sturgeon research has and continues to occur, critical knowledge gaps remain. Recruitment of lake sturgeon is variable, but the extent of that variation, its limiting factors, and mortality rates experienced by early life stages are unclear. The purpose of this study was to increase our understanding of lake sturgeon early life stages by examining characteristics of a remnant population in the Peshtigo River, Wisconsin. Specifically, this research sought to empirically estimate rates of early life stage mortality, describe the vertical distribution of drifting larvae, evaluate the impacts of predation on recruitment, and describe patterns in movement and abundance of age-0 juveniles. Extensive sampling of lake sturgeon eggs, larvae, age-0 juveniles, and potential predators occurred during 2006 and 2007. Although drifting lake sturgeon larvae were captured in all parts of the water column, more were found near the surface than the substrate. After drifting to nursery areas, individuals exhibited variable movement patterns. Some fish were never recaptured more than 10 m from the initial capture site, while other individuals moved more than 9 km. Even though absolute abundance of juveniles differed by an order of magnitude between 2006 and 2007, a pattern of steady decline during the summer months was similar during both years. This downstream movement may have resulted in emigration from the Peshtigo River, as there was no evidence of predation on this life stage. Overall mortality from the egg to age-0 juvenile life stage exceeded 99.9% in both study years. Predation on eggs was extensive by both crayfish and fish (white sucker Catostomus commersonii ), but was minimal on other life stages. These results suggest that recruitment can vary significantly, and predation is likely only limiting at the egg life stage. These results will allow more effective monitoring and management of lake sturgeon early life stages, thereby promoting population recovery.
    • Early marine growth patterns of Situk River steelhead, Oncorhynchus mykiss

      Catterson, Matthew R.; McPhee, Megan; Love, David; Sutton, Trent (2017-08)
      Steelhead Oncorhynchus mykiss exhibit complex life-history patterns described by variable freshwater and marine residency periods, maturation patterns, and reproductive characteristics. Over 300 small populations of Steelhead are present in Southeast Alaska, and similar trends in abundance among these populations suggest the influence of population-regulating forces operating on a regional scale. The Situk River, near Yakutat, Alaska, supports the largest known population of Steelhead in Alaska. Stock assessment studies on this river have collected the longest set of biological data and scale samples for Steelhead in the state. For this study, retrospective scale pattern analysis of samples from Situk River Steelhead was synthesized with regional abundance information to investigate patterns in early marine growth among different life-history and demographic groups, as well as to explore linkages between growth, abundance, and marine environmental variables. Positive correlations were identified between freshwater growth, first ocean-year growth, and adult length, while first ocean-year growth was negatively correlated with second ocean-year growth. Early maturing Steelhead were found to have increased first ocean-year growth and reduced adult length relative to later maturing Steelhead, confirming connections between growth and maturation. Correlations in abundance among Southeast Alaska Steelhead populations suggest that marine and climatic drivers may impact these populations in a regionally coherent manner. Correlations among patterns in abundance also varied along a distance gradient: populations located closer to the Situk River were more correlated with the Situk River than more distant populations. Positive relationships between Gulf of Alaska sea surface temperature, North Pacific Gyre Oscillation, and Situk River Steelhead abundance further supported the importance of climate-driven marine conditions to Steelhead productivity. While conservation concerns for Steelhead in Southeast Alaska are currently minimal, proactive investigations into life-history diversity and population linkages may become more relevant with increased marine ecosystem variability related to climate change.
    • Earthquake source mechanisms and three-dimensional wavefield simulations in Alaska

      Silwal, Vipul; Tape, Carl; Christensen, Douglas; West, Michael; Ruppert, Natalia; Freymueller, Jeffrey (2018-08)
      This thesis presents: (1) a set of earthquake source mechanism catalogs for Alaska and (2) a threedimensional seismic velocity model of Alaska. The improved earthquake sources are used within the velocity model for generating synthetic seismograms, which are then compared with recorded seismograms to assess the quality of the velocity model. An earthquake source mechanism can be modeled as a moment tensor, which is a 3 × 3 symmetric matrix. We estimate the moment tensor for earthquakes by comparing observed waveforms (body waves and surface waves) with synthetic waveforms computed in a layered model. The improved moment tensor solutions are obtained by utilizing both the body waves and surface waves at as many broadband stations as possible. Further improvement in the inversion technique is obtained by (1) implementation of L1 norm in waveform misfit function and (2) inclusion of first-motion polarity misfit in the misfit function. We also demonstrate a probabilistic approach for quantifying the uncertainty in a moment tensor solution. Moment tensors can be used for understanding the tectonics of a region. In the Cook Inlet and Susitna region, west of Anchorage, we determined moment tensor solutions for small-tointermediate magnitude (M ≥ 2.5) crustal earthquakes. Analyzing these small earthquakes required us to modify the misfit function to include first-motion polarity measurements, in addition to waveform differences. The study was complemented with the probabilistic hypocenter estimation of large historical earthquakes (Mw ≥ 5.8) to assess their likelihood of origin as crustal, intraslab, or subduction interface. The predominance of thrust faulting mechanisms for crustal earthquakes indicate a compressive regime within the crust of south-central Alaska. Wavefield simulations are performed in three regions of Alaska: the southern Alaska region of subduction, the eastern Alaska region with the accreting Yakutat microplate, and the interior Alaska region containing predominantly strike-slip faulting, including the Minto Flats fault zone. Our three-dimensional seismic velocity model of Alaska is an interpolated body-wave arrival time model from a previous study, embedded with major sedimentary basins (Cook Inlet, Susitna, Nenana), and with a minimum shear wave velocity threshold of 1000 m/s. Our comparisons between data and synthetics quantify the misfit that arises from different parts of each model. Furtherwork is needed to comprehensively document the regions within each model that give rise to the observed misfit. This would be a step toward performing an iterative adjoint tomographic inversion in Alaska.
    • Eating disorder symptomatology among Alaska Native/American Indian and caucasian female university students in the extreme North

      Saunders, Miranda R. (2004-05)
      The purpose of this study was to explore differences in eating disorder symptomatology among a matched sample of 100 Alaska Native/American Indian and Caucasian female university students, using a demographic instrument and the Eating Attitudes Test (EAT-26). Four (8.0%) Native participants and ten (20.0%) Caucasian participants met or exceeded the EAT-26 cutoff score indicative of clinically significant eating disorder symptomatology. There were no significant differences found among the Native and Caucasian participants with regard to eating disorder symptomatology. Rather, eating disorder symptomatology was present in both Native and Caucasian female college students at rates similar to that of previous studies.
    • Ecogeographic, Adaptive, And Phylogenetic Variations In The Crested Duck (Lophonetta Specularioides) And Their Hemoglobins In The Andes

      Bulgarella, Mariana; McCracken, Kevin; Takebayashi, Naoki; Tubaro, Pablo L.; Winker, Kevin S. (2010)
      Tolerance to high-altitude hypoxia in animals varies widely and is a key factor in determining survival at high elevation. The Andean Cordillera of South America, which spans large elevational and latitudinal gradients, enables the study of native highland populations and the characteristics of hemoglobin proteins that are locally adapted for high-altitude respiration. The waterfowl populations of South America are understudied, little data on demographics and behavior are currently available, and only recently have they been investigated using molecular tools. We studied population genetics, phylogeography, and ecogeographic variation in the crested duck ( Lophonetta specularioides). The crested duck is a dabbling duck, and it comprises two subspecies endemic to highland and lowland regions of South America. The primary objective of this study was to investigate the genetic differentiation between highland and lowlands populations of crested ducks using molecular markers with varying modes of inheritance and rates of substitution. The second objective was to evaluate morphological differences between the subspecies to better understand the forces shaping morphology in the two different environments. A third objective was to provide additional information on the taxonomic relationships and natural history of the crested duck. First, we examined the population genetics of the three adult hemoglobins (alphaD, alphaA, betaA), six autosomal introns, and mtDNA. This multi-locus analysis revealed a significant pattern of differentiation between highland and lowland populations. Four hemoglobin amino acid replacements were found in crested duck that may play a role in influencing high-altitude respiration. The lack of evidence for gene flow for hemoglobin alleles between highland and lowland populations and the biochemical properties of the amino acid substitutions themselves are consistent with the effects of selection acting on these loci. Overall body size was larger for the highland subspecies, body size was intermediate in mid-elevation environments, and smaller individuals were found in the lowlands of Patagonia. We also performed a multi-locus phylogenetic analysis to determine the relationships of Lophonetta within the South American duck clade. Finally, we determined the proportion of genes expressed in bone marow of adult crested duck finding mostly genes related to hemopoietic and immune function.
    • Ecological And Physiological Adaptations Of The Porcupine To Winter Alaska

      Coltrane, Jessica A.; Barboza, Perry; Spalinger, Donald E.; Farley, Sean; Barnes, Brian M. (2012)
      Understanding the ecology and physiology of wildlife is paramount to conservation and management of species. North American porcupines (Erethizon dorsatum) are mammalian herbivores that occupy a diverse array of habitats across a broad geographical range. However, few studies have explored the ecology and physiology of porcupines. I used captive and free ranging porcupines to 1) identify the physiological abilities that enable them to survive on low quality winter forage when thermoregulatory demands are high, 2) determine responses of porcupines to winter conditions, and 3) determine how winter conditions influence habitat selection and home range size at the northern limits of their range. My research revealed that the persistence of porcupines at the northern limits of their range is due to plasticity of food intake, as well as physiological tolerance of low-quality diets and low ambient temperatures. Captive porcupines gained mass when high quality diets were available. However, porcupines decreased their dry matter intake throughout winter, indicating a seasonal decrease in metabolic rate. Low requirements for energy and nitrogen minimized the loss of body mass when intakes were low, while plant toxins increased urinary losses of energy and nitrogen. Free-ranging porcupines conserved lean body mass in winter by catabolizing fat stores. Proportional fat loss was correlated positively with total fat mass at the start of winter. Fat losses were minimized by lowering rates of energy expenditure. Water turnovers were slow in wild porcupines and body temperatures were not reduced to save energy. In order to survive winter on a low quality diet of white spruce (Picea glauca ) needles and cambium and paper birch (Betula papyrifera ) cambium, porcupines maintained large home ranges comprised primarily of mixed conifer/hardwood forests. Occupying a mixed forest habitat allowed porcupine to switch their diet between two forage tree species, potentially alleviating saturated detoxification pathways. Overall, porcupines possess the physiological abilities of a specialist herbivore during winter; however, they rely on abundant high quality summer forages to replenish their stores of fat and protein for reproduction and survival in the subsequent winter.