• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • Geophysical Institute
    • Publications
    • GI Reports
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • Geophysical Institute
    • Publications
    • GI Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Auroral zone absorption of radio waves transmitted via the ionosphere

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    GI Reports 52.pdf
    Size:
    1.894Mb
    Format:
    PDF
    Download
    Author
    Owren, Leif
    Leinbach, Harold
    Nichols, B.
    Stark, R.
    Smith, Carol
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/3581
    Abstract
    TASK A: TRANSMISSION OF HIGH FREQUENCY RADIO WAVES VIA THE ARCTIC IONOSPHERE The experimental data collected from June, 1949, through October, 1955, under "Experiment Aurora" are summarized in tables and diagrams, and the results discussed. The monthly percentage of signal in-time is tabulated for all frequencies and paths» and depicted in diagrams which allow a comparison of the values for East-West and South-North propagation at each frequency. The average monthly percentage of signal in-time for the duration of the 6-year experiment is tabulated for each frequency and path. The seasonal variation in signal in-tim e over short and long paths is shown in diagrams. The relationship found between ionospheric absorption, as measured with a vertical incidence sounder, and signal outtime is summarized. The average diurnal variation in the hourly median signal strength during the different seasons of the year 1954-55 is given for all frequencies on both short and long paths in the East-West as well as the South-North direction. The diurnal variation in signal strength on the 4 me short paths and the 12 me long paths is compared for a year of high solar activity (1949-50) and a year of low solar activity (1954-55). The discussion of the data reveals that a statistically significant difference in signal in-time for the East-West and South-North paths exists only for the 12 me short paths. The larger percentage of signal in-time found in the East-West direction is believed to be due to a preferential orientation of sporadic ionization along parallels to the auroral zone. A study of the critical frequencies observed for the E and F -layers shows that the difference in daytime variation of median signal strength between the years 1949-50 and 1954-55 may be explained in terms of the normal changes in F -layer ionization and D -layer absorption in course of a sunspot cycle. The results indicate that in Alaska there will generally be F2 propagation during daytime of 4 me signals over 350 km paths throughout the solar cycle. Regular daytime F2 propagation of 12 me signals over 1100 km paths may be expected in years of reasonably high solar activity only. TASK B: PULSE TECHNIQUES. BACK-SCATTER AT 12 MC A 12 me radar has been constructed and operated using A -scope and PPI displays. Experimental results obtained during several months of continuous operation are reviewed and discussed. Both direct backscatter and ground back-scatter echoes, as well as possible combinations of these modes, have been observed. The echoes are classified in two groups according to their fading rates, those fading rapidly being associated with aurora. Figures show the diurnal, range and range-azimuth distribution of the observed auroral echoes as well as some special types of echoes recorded. The direct back-scatter echoes at 12 me associated with aurora show characteristics consistent with those observed at YHF when allowance is made for the frequency difference. At 12 me the fading rate is proportionally less than at higher frequencies; and aspect sensitivity, although weaker, still exists. The diurnal variation is similar to that found at VHF. Several types of echoes not observed at VHF are mentioned. TASK B: VISUAL OBSERVATIONS OF THE AURORA Analysis is made of the visual auroral data obtained at five stations in Alaska during the observing period of 1954-55. Graphs giving the percentage occurrence of aurora at each station as a function of latitude and time of day are presented. Graphs showing the variation of auroral occurrence with geomagnetic latitude as a function of magnetic K index are also given. The conclusions drawn from the 1954-55 data are substantially the same as those based on the 1953-54 data discussed in an earlier report.
    Table of Contents
    List of Figures – List of Tables – Section I Purposes – Section II Abstract – Section III Publications, Reports and Conferences – Section IV Factual Data : 1 Task A. Transmission of High Frequency of Radio Waves Via the Arctic Ionosphere ; 2 Task B. Pulse Techniques Back-Scatter at 12 Mc. ; 3 Task B Visual Observations of the Aurora – Section V Conclusions – Section VI Recommendations – Section VII Personnel
    Date
    1956
    Source
    Geophysical Institute
    Publisher
    Geophysical Institute at the University of Alaska
    Type
    Report
    Peer-Reviewed
    Yes
    Collections
    GI Reports

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2022 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.