• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • Geophysical Institute
    • Publications
    • GI Reports
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • Geophysical Institute
    • Publications
    • GI Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Ice Fog: Low Temperature Air Pollution; Defined with Fairbanks, Alaska as type locality

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    GI Reports 173.pdf
    Size:
    10.27Mb
    Format:
    PDF
    Download
    Author
    Benson, Carl S.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/3646
    Abstract
    Stable pressure systems over interior Alaska sometimes produce prolonged, extreme (below -40°C) cold spells at the surface. The meteorological conditions responsible for two such cold spells are discussed in detail in Appendix A, where it is shown that the rate of radiative cooling of the air is enhanced by suspended ice crystals which are themselves a result of the initial cooling. Radiation fogs formed during the onset of cold spells are generally of short duration because the air soon becomes desiccated. These fogs consist of supercooled water droplets until the air temperature goes below the "spontaneous freezing point” for water droplets (about -40°C); the fog then becomes an ice crystal fog, or simply "Ice Fog". During the cooling cycle water is gradually condensed out of the air until the droplets freeze. At this point there is a sharp, discontinuous decrease in the saturation vapor pressure of the air because it must be reckoned over ice rather than over water. The polluted air over Fairbanks allows droplets to begin freezing at the relatively high temperature of -35°C. Between -35 and -40°C the amount of water vapor condensed by freezing of supercooled water droplets is 3 to 5 times greater than the amount condensed by 1°C of cooling at these temperatures. This results in rapid and widespread formation of ice fog (Appendix B) which persists in the Fairbanks area as long as the cold spell lasts. The persistence of Fairbanks ice fog depends on a continual source of moisture (4.. 1 x 10^6 Kg H2O per day) from human activities within the fog. Ice fog crystals are an order of magnitude smaller than diamond dust, or cirrus cloud crystals, which in turn are an order of magnitude smaller than common snow crystals (0.01, 0.1 and 1 to 5-mm respectively). The differences in size are shown to result from differences in cooling rates over 5 orders of magnitude. Most of the ice fog crystals have settling rates which are slower than the upward velocity of air over the city center. The upward air movement is caused by convection cells driven by the 6°C "heat island" over Fairbanks. This causes a reduced precipitation rate which permits the density of ice fog in the city center to be three times greater than that in the outlying areas. The inversions which occur during cold spells over Fairbanks begin at ground level and are among the strongest and most persistent in the world. They are three times stronger than those in the inversion layer over Los Angeles. Thus, the low-lying air over Fairbanks stagnates and becomes effectively decoupled from the atmosphere above, permitting high concentrations of all pollutants. The combustion of fuel oil, gasoline, and coal provides daily inputs of: 4.1 x 10^6 kg CO2 ; 8.6 x 10^3 kg SO2 ; and 60, 46 and 20 kg of Pb, Br and Cl respectively, into a lens-like layer of air resting on the surface with a total volume less than 3 x 10^9 m^3. The air pollution over Fairbanks during cold spells couldn't be worse, because the mechanisms for cleaning the air are virtually eliminated while all activities which pollute the air are increased.
    Table of Contents
    Introduction : Acknowledgements -- Air Pollution : Types of air pollution ; Temperature Inversions ; Low Temperature Air Pollution -- Sources of Pollution, I Water : Combustion Products ; Cooling Water from Power Plants ; Miscellaneous Sources ; Summary of Man-made Water Sources for the Fairbanks Atmosphere -- Sources of Pollution, II Products Other Than Water : Electrical Conductance and Particulates ; Combustion Products ; Summary of Pollutants Other Than Water -- Economic Growth and Ice Fog -- General Physical Properties of Ice Fog : Optical Properties ; Cooling Rate of Exhaust Gases ; Development of a Typical Ice Fog -- Structure of the Polluted Air Layer : Volume ; Temperature Distribution and Convection in Fairbanks Air -- Mass Budget of Ice Fog : Ice Fog Precipitation Rates ; Density of Ice Fog ; Ice Fog Evaporation Rates ; Use of the Mass Budget Equation -- Air Pollution Aspects of Ice Fog : Air Pollution ; Remedial Action -- References Cited -- Appendices : Appendix A -- Appendix B
    Date
    1965-11
    Source
    Geophysical Institute
    Publisher
    Geophysical Institute at the University of Alaska
    Type
    Report
    Peer-Reviewed
    Yes
    Collections
    GI Reports

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.