• Landscape Control Of Thunderstorm Development In Interior Alaska

      Dissing, Dorte; Verbyla, David (2003)
      General Circulation Models suggest a future climate of warmer and possibly drier summers in the boreal forest region, which could change fire regimes in high latitudes. Thunderstorm development is a dominant factor in the continental boreal forest fire regime, through its influence as a fire starting mechanism. Global Climate Change research has identified the land-atmosphere interface as a vital area of a needed research in order to improve our predictions of climate change. This dissertation has focused on the development of thunderstorms and lightning strike activity in a boreal forest region in Interior Alaska and on how the underlying surface can influence their development. I have examined the distributions and correlations between lightning strikes, thunderclouds, thunderstorm indices (CAPE and LI), elevation, and vegetation variables in Alaska. The relationships were examined at scales ranging from the Interior region of the state to individual wildfire burn scars, and at temporal scales ranging from the annual to daily. The objective is to understand the influential factors and processes responsible for thunderstorm development in Alaska, such that we may produce well-founded predictions on future thunderstorm regimes caused by a changing climate. The scale-related studies of this dissertation show that both processes and important variables for development of thunderstorms and lightning activity vary within and between the scales. It appears that on the larger scales, the combined effects of boreal forest and elevation on increased lightning strike activity were more prevalent than at the smallest scale (local). When the scale gets too small for the boundary layer to be affected (<10km), land surface effects on lightning cannot be. My results suggest that the underlying surface (in the form of areal forest coverage and vegetation) has more of an influence on convective development on days with airmass storms than on days with synoptic storms.
    • The Treeline Ecotone In Interior Alaska: From Theory To Planning And The Ecology In Between

      Wilmking, Martin; Juday, Glenn Patrick (2003)
      Treelines have been the focus of intense research for nearly a hundred years, also because they represent one of the most visible boundaries between two ecological systems. In recent years however, treelines have been studied, because changes in forest ecosystems due to global change, e.g. treeline movement, are expected to manifest first in these areas. This dissertation focuses on the elevational and latitudinal treelines bordering the boreal forest of interior Alaska. After development of a conceptional model of ecotones as three-dimensional spaces between ecosystems, we offer a historical perspective on treeline research and its broader impact in the Brooks Range, Alaska. Dendrochronological analysis of >1500 white spruce (Picea glauca (Moench [Voss])) at 13 treeline sites in Alaska revealed both positive and negative growth responses to climate warming, challenging the widespread assumption that northern treeline trees grow better with warming climate. Hot Julys decreased growth of ~40% of white spruce at treeline in Alaska, whereas warm springs enhanced growth of others. Growth increases and decreases appear at temperature thresholds, which have occurred more frequently in the late 20th century. Based on these relationships between tree-growth and climate as well as using landscape characteristics, we modeled future tree-growth and distribution in two National Parks in Alaska and extrapolated the results into the 21 st century using climate scenarios from five General Circulation Models. In Gates of the Arctic National Park, our results indicate enhanced growth at low elevation, whereas other areas will see changes in forest structure (dieback of tree-islands, infilling of existing stands). In Denali National Park, our results indicate possible dieback of white spruce at low elevations and treeline advance and infilling at high elevations. This will affect the road corridor with a forest increase of about 50% along the road, which will decrease the possibility for wildlife viewing. Surprisingly, aspect did not affect tree growth-climate relationships. Without accounting for opposite growth responses under warming conditions, temperature thresholds, as well as meso-scale changes in forest distribution, climate reconstructions based on ring-width will miscalibrate past climate, and biogeochemical and dynamic vegetation models will overestimate carbon uptake and treeline advance under future warming scenarios.