• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Predicting Distributions of Estuarine Associated Fish and Invertebrates in Southeast Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Miller_uaf_0006E_10008.pdf
    Size:
    5.221Mb
    Format:
    PDF
    Download
    Author
    Miller, Katharine Bollinger
    Chair
    Norcross, Brenda
    Committee
    Iken, Katrin
    Weingartner, Tom
    Mundy, Phillip
    Huettmann, Falk
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4295
    Abstract
    Estuaries in Southeast Alaska provide habitat for juveniles and adults of several commercial fish and invertebrate species; however, because of the area's size and challenging environment, very little is known about the spatial structure and distribution of estuarine species in relation to the biotic and abiotic environment. This study uses advanced machine learning algorithms (random forest and multivariate random forest) and landscape and seascape-scale environmental variables to develop predictive models of species occurrence and community composition within Southeast Alaskanestuaries. Species data were obtained from trawl and seine sampling in 49 estuaries throughout the study area. Environmental data were compiled and extracted from existing spatial datasets. Individual models for species occurrence were validated using independent data from seine surveys in 88 estuaries. Prediction accuracy for individual species models ranged from 94% to 63%, with 76% of the fish species models and 72% of the invertebrate models having a predictive accuracy of 70% or better. The models elucidated complex species-habitat relationships that can be used to identify habitat protection priorities and to guide future research. The multivariate models demonstrated that community composition was strongly related to regional patterns of precipitation and tidal energy, as well as to local abundance of intertidal habitat and vegetation. The models provide insight into how changes in species abundance are influenced by both environmental variation and the co-occurrence of other species. Taxonomic diversity in the region was high (74%) and functional diversity was relatively low (23%). Functional diversity was not linearly correlated to species richness, indicating that the number of species in the estuary was not a good predictor of functional diversity or redundancy. Functional redundancy differed across estuary clusters, suggesting that some estuaries have a greater potential for loss of functional diversity with species removal than others.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2013
    Date
    2013-05
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.