• The role of tundra vegetation in the Arctic water cycle

      Clark, Jason A.; Tape, Ken; Schnabel, William; Euskirchen, Eugénie; Ruess, Roger (2019-12)
      Vegetation plays many roles in Arctic ecosystems, and the role of vegetation in linking the terrestrial system to the atmosphere through evapotranspiration is likely important. Through the acquisition and use of water, vegetation cycles water back to the atmosphere and modifies the local environment. Evapotranspiration is the collective term used to describe the transfer of water from vascular plants (transpiration) and non-vascular plants and surfaces (evaporation) to the atmosphere. Evapotranspiration is known to return large portions of the annual precipitation back to the atmosphere, and it is thus a major component of the terrestrial Arctic hydrologic budget. However, the relative contributions of dominant Arctic vegetation types to total evapotranspiration is unknown. This dissertation addresses the role of vegetation in the tundra water cycle in three chapters: (1) woody shrub stem water content and storage, (2) woody shrub transpiration, and (3) partitioning ecosystem evapotranspiration into major vegetation components. In Chapter 1 I present a method to continuously monitor Arctic shrub water content. The water content of three species (Salix alaxensis, Salix pulchra, Betula nana) was measured over two years to quantify seasonal patterns of stem water content. I found that spring uptake of snowmelt water and stem water storage was minimal relative to the precipitation and evapotranspiration water fluxes. In Chapter 2, I focused on water fluxes by measuring shrub transpiration at two contrasting sites in the arctic tundra of northern Alaska to provide a fundamental understanding of water and energy fluxes. The two sites contrasted moist acidic shrub tundra with a riparian tall shrub community having greater shrub density and biomass. The much greater total shrub transpiration at the riparian site reflected the 12-fold difference in leaf area between the sites. I developed a statistical model using vapor pressure deficit, net radiation, and leaf area, which explained >80% of the variation in hourly shrub transpiration. Transpiration was approximately 10% of summer evapotranspiration in the tundra shrub community and a possible majority of summer evapotranspiration in the riparian shrub community. At the tundra shrub site, the other plant species in that watershed apparently accounted for a much larger proportion of evapotranspiration than the measured shrubs. In Chapter 3, I therefore measured partitioned evapotranspiration from dominant vegetation types in a small Arctic watershed. I used weighing micro-lysimeters to isolate evapotranspiration contributions from moss, sedge tussocks, and mixed vascular plant assemblages. I found that mosses and sedge tussocks are the major constituents of overall evapotranspiration, with the mixed vascular plants making up a minor component. The potential shrub transpiration contribution to overall evapotranspiration covers a huge range and depends on leaf area. Predicted increases in shrub abundance and biomass due to climate change are likely to alter components of the Arctic hydrologic budget. The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and future hydrologic function in the Arctic tundra. Shifts in the composition and cover of mosses and vascular plants will not only alter tundra evapotranspiration dynamics, but will also affect the significant role that mosses, their thick organic layers, and vascular plants play in the thermodynamics of Arctic soils and in the resilience of permafrost.