• Organochlorines In Steller Sea Lions (Eumetopias Jubatus)

      Myers, Matthew John; Atkinson, Shannon; Krahn, Margaret; Rea, Lorrie; Castellini, Michael; Mellish, Jo-Ann; Burdin, Alexander (2009)
      Existing populations of Steller sea lions (Eumetopias jubatus ) have declined precipitously over the last half-century. Investigations into the cause of this downward trend have focused on many different possible factors. Toxicity caused by the accumulation of organochlorines (OCs), such as polychlorinated biphenyls (PCBs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane or dichlorodiphenyltrichloroethane (DDT), has been demonstrated in marine mammals and was considered here as one possible factor that may have contributed to the decline of Steller sea lions or their failure to recover. The focus of this project was to investigate the relationship of contaminant loads to hormone levels, specifically thyroid hormones and cortisol in Steller sea lions. Two approaches were taken to this study. Firstly, baseline hormone concentrations were identified for the thyroid hormones, thyroxine (T 4) and triiodothyronine (T3), and cortisol. This involves comparison and extrapolation. Secondly, possible risk effects were examined by comparing levels of OCs in captive and free-ranging Steller sea lions to known effects in related species with known physiological thresholds. Serum concentrations of total T4 were highest in Steller sea lions followed by total T3 concentrations. Concentrations of free T4 and free T3 were three to four orders of magnitude lower. Concentrations for all four thyroid hormone measurements tended to a lower level as animals matured beyond the neonatal stage. When thyroid hormones from captive sea lions were evaluated across seasons, all thyroid hormones were highest in the July to September period. Cortisol concentrations were similar in male and female pups. Cortisol varied with age but when considered in regards to time of year when sampled, followed a seasonal pattern. Cortisol was elevated in fall months in captive sea lions (non-pups), which is similar to what is seen in other marine mammals and is likely associated with the annual molt. Male pups from Alaska had lower levels of SigmaPCBs and SigmaDDT when compared to male pups from Russia. Female pups from Alaska were significantly lower in SigmaPCBs than Russian female pups as were female pups for SigmaDDT levels between areas. Anywhere from 12 to 64% (depending on rookery) of Steller sea lion pups investigated for contaminants had concentrations of SigmaPCBs that are high enough to cause physiological problems. Concentrations in blood taken monthly for 2 years in three captive Steller sea lions were similar at any given sampling time and followed a seasonal pattern with levels significantly higher in the summer months of July to September and lower in the three month winter period January to March. Concentrations of OCs in blubber samples collected quarterly for the captive females followed an analogous pattern to blood samples but the captive male sea lion was considerably lower and declined over the study period. A significant relationship between blubber contaminants and lipids was noted in the three captive Steller sea lions. Even though OC contamination has not been hypothesized to be the primary factor that precipitated the population decline, there is a potential for these chemicals to have a negative effect on the health of free-ranging Steller sea lions. These data suggest that concentrations of OCs in Steller sea lions may be high enough to cause endocrine or reproductive dysfunction and could potentially impact fertility or fecundity. Therefore, OC contaminants can not be dismissed as a contributing source to either the decline or the failure to recover of the Steller sea lion population.
    • Reproductive Potential Of Pacific Cod (Gadus Macrocephalus) In Alaska

      Ormseth, Olav Aleksander; Norcross, Brenda L. (2007)
      The reproductive potential of female fishes, which results from the number of eggs they produce and the quality of individual eggs, is a critical factor in fisheries biology. Reproductive potential is important to individuals because maternal fitness is the product of the number of offspring produced and how many offspring survive. The growth rate of populations and their capacity for supporting commercial fisheries also depend on the number of viable offspring that females produce. I studied the reproductive potential of female Pacific cod (Gadus macrocephalus) in the North Pacific Ocean. Pacific cod is an important ecological and economic resource, yet much of its reproductive biology remains unexplored. I used several different approaches to investigate whether egg number or egg size are more important in determining reproductive potential, and to evaluate factors that influence reproduction. An analysis of life history variation among Pacific cod in Canada and Alaska demonstrated that despite differences in life history strategies, females from different populations had similar lifetime reproductive success (a proxy for individual fitness). I also collected Pacific cod in the Gulf of Alaska, eastern Bering Sea, and western Aleutian Islands from 2002 to 2005. Biochemical analyses of Pacific cod eggs revealed that Pacific cod produce low-energy eggs that are adapted for rapid development on the seafloor. Larger females produce eggs with less arachidonic acid (a fatty acid that has been linked to egg quality) than smaller females, suggesting that they may sacrifice egg quality to maintain fecundity. Determination of fecundity and egg size in 590 females from different areas and years revealed that maternal length and weight are excellent predictors of fecundity, but that variability in egg size is not related to the age or size of females, The greatest difference in reproductive potential among years and areas was reduced egg size in the eastern Bering Sea in 2003, which may have been due to changes in ocean temperature or prey availability that impacted the ability of females to store energy. These results suggest that female Pacific cod maximize their fitness through increased egg production, not egg quality, and that their reproductive success is under strong environmental control.