• Underwater bioacoustic analysis of bearded seal behavior off Barrow, Alaska

      Ajmi, Amal Romona; Castellini, Michael; Kelley, John; Murphy, Edward (1996-12)
      Bearded seal vocalizations were collected incidentally during the 1993 bowhead whale census. Analysis of seal locations, calculated by triangulation of the vocalizations, provided information on seal swim velocity, distribution, and movement. Swim speeds fell within previously documented values. Seal positions, when correlated with satellite images, suggested that seal distribution was directly associated with ice topography. Individually tracked seals exhibited different types of movements including: maintenance of position, rapid increase in speed and slower, prolonged directional travel. Swim speeds, distributions, and movements suggest distinct behaviors which may include foraging, territorial or female defense, or display. Movement and behaviors may alter as ice conditions change throughout the breeding season. Bioacoustics, when coupled with other research methods, is a useful tool in the study of the behavior of less accessible animals.
    • Use of Beaufort Sea as feeding habitat by bowhead whales (Balaena mysticetus) as indicated by stable isotope ratios

      Lee, Sang Heon; Schell, Donald; Finney, Bruce; Weingartner, Thomas (2000-12)
      The feeding habitats of the Western Arctic bowhead whales (Balaena mysticetus) during summer are generally known, but the precise amounts of food consumed from the eastern Beaufort Sea (EBS) are not known. [Alpha]13C and [alpha]15N ratios in whale tissues were used to estimate the amounts of food required from EBS. The feeding strategies of adults and subadults were also compared. For all whales, the [alpha]13C values in muscle sampled in fall were not significantly different from those in the muscle sampled in spring, indicating most food of adults and subadults comes from the Bering/Chukchi seas. The ¹³C data from baleen showed, however, that EBS may be a significant feeding area for subadults. [alpha]15N values are significantly different between fall and spring muscle in subadults, suggesting a shift to different prey and/or nutritional stress during winter followed by feeding in EBS in summer.
    • Using otolith strontium isotopes to elucidate population structure and movements of Bering cisco (Coregonus laurettae)

      Padilla, Andrew John; Wooller, Matthew; Adkison, Milo; López, Andrés (2015-05)
      Methods for stock discrimination and tracking the movements and distribution of fishes have often involved expensive field logistics, a problem compounded in remote regions such as Alaska. An alternative approach is to use the chemical signatures preserved in otoliths, or ear bones, of teleost fishes to discriminate stocks or to track the movement history of fish. Currently, a commercial fishery targeting the anadromous Bering cisco Coregonus laurettae is occurring in the Yukon River, Alaska. There are only three known Bering cisco spawning rivers worldwide, the Yukon, South Fork Kuskokwim (Kuskokwim), and Susitna rivers. Managers and researchers believed that two of the three spawning-river populations (Yukon and Kuskokwim rivers) were being harvested in the fishery, due to major coastal currents linking two of the spawning rivers' deltas. To determine the likelihood of a mixed-stock fishery, in Chapter 1, I used the strontium isotope signature (⁸⁷Sr/⁸⁶Sr) preserved in the freshwater portion of otoliths to establish a baseline for the three natal rivers. The baseline data set was composed of otoliths from spawning adult Bering cisco of known origin (n=82). Subsequently, the baseline was used to classify commercially harvested Bering cisco (n=139) and determine the stock composition of the fishery. Greater than 97% of the commercial samples were classified as Yukon River origin. However, 0.7%, and 1.4% of the commercial samples were classified as originating from Kuskokwim and Susitna rivers, respectively. In Chapter 2, I used the baseline data to classify Bering cisco from three coastal rearing areas (Alaska Arctic coast, n=49; Y-K Delta, n=70; and the Alaska Peninsula, n=8). More than 96% of the coastal rearing Bering cisco had ⁸⁷Sr/⁸⁶Sr signatures consistent with a Yukon River origin. These data demonstrate the wide-spread coastal distribution of Bering cisco, with some travelling >4,900 km between coastal rearing and spawning habitats. This approach illustrates that ⁸⁷Sr/⁸⁶Sr can determine the natal river of Bering cisco. Subsequently, this method can be used for stock discrimination and elucidating migration patterns for unknown origin Bering cisco.
    • Using remote camera techniques to study black-legged kittiwake (Rissa tridactyla) productivity in Resurrection Bay in the northern Gulf of Alaska

      Tanedo, Sarah; Hollmén, Tuula; Winsor, Peter; Beaudreau, Anne (2016-05)
      Monitoring sentinel species in environments undergoing ecosystem change is essential to understanding how the organisms living in these habitats will respond. Seabirds are considered sensitive to shifts in their local environment and have been used as sentinels but many species occupy remote locations, posing logistical challenges for long-term studies. Remote camera techniques offer a possible alternative to other methods of monitoring seabirds during their breeding seasons. To investigate the use of remote camera techniques to study cliff-nesting seabirds and identify factors influencing their productivity, a remote video-camera system was used to collect 6 years (2010-2015) of reproductive data from a sub-colony of Black-legged Kittiwakes (Rissa tridactyla) in Resurrection Bay near Seward, Alaska. The first objective was to refine remote camera techniques by investigating the influence of 1) observation frequency and 2) observation type (video or still image) on estimates of productivity. Observation frequency from daily up to one week intervals did not have a significant effect on estimates of productivity. Observations made twice annually were found to be significantly different from estimates of productivity calculated using daily observation frequency. Still image and video methods of observation did not significantly affect estimates of productivity. The second objective was to identify factors that influence reproductive success of kittiwakes at Cape Resurrection by 1) determining the effect of nest characteristics on individual nest success, 2) identifying the effect of behavior of breeding adults during the incubation period on hatch success, 3) determining the effect of seasonal weather patterns on loss events, and 4) investigating the relationship between annual productivity and sea surface temperature (SST) over a 5 year period. Model analysis of nest characteristics on individual nest success indicated that mainland/island location and nest height above water influenced individual nest success. Behavior of breeding adults did not influence hatch success. Nest loss was influenced by average wind speeds. Annual SST was not correlated with annual productivity over a 5 year time period. Based on the results of this study, I recommend remote camera technologies for the purpose of studying cliff-nesting seabirds in remote locations and found them a useful tool for identifying and tracking factors that influence the breeding success of these populations over a multiyear time period.
    • Using strontium isotopes to track Pacific salmon migrations in Alaska

      Brennan, Sean Reiss; Wooller, Matthew; Fernandez, Diego; Cerling, Thure; Zimmerman, Christian; McPhee, Megan; Weingartner, Thomas (2014-08)
      Pacific salmon (Oncorhynchus spp.) are an important cultural, ecological, and economic natural resource in Alaska. Not only do salmon maintain an important mechanism of nutrient transport between marine, aquatic, and terrestrial ecosystems, but they also provide a sustainable food and economic resource for human communities. A challenging issue in the management, conservation, and research of Pacific salmon is tracking their responses to perturbations across the multiple scales of population structure that characterize these species. Research has shown how the inherent biodiversity of Pacific salmon imparts resiliency to environmental change, and temporal stability to their overall productivity and the human systems dependent upon such productivity (e.g., fisheries). The vast biodiversity of salmon arises primarily via precise natal homing of adults to their rivers of origin, resulting in locally adapted populations. Thus, there have been considerable efforts to develop methods to effectively manage and monitor Pacific salmon biodiversity. One important example is using genetic differentiation among populations to discern the relative contributions of genetically distinct stocks in mixed stock fishery harvests. In the Bristol Bay region, sockeye salmon (O. nerka) harvests can be discerned at the watershed level (i.e., the nine major watersheds contributing to the fishery). However, tens to hundreds of locally adapted populations exist within each of these watersheds and methods to apportion fishery harvests to this finer scale population structure are lacking. This dissertation presents a new method in Alaska to discern fine-scale population structure (i.e., within watersheds) of Chinook salmon (O. tshawytscha) harvests using a naturally occurring geochemical tracer in rivers, strontium (Sr) isotopes (⁸⁷Sr/⁸⁶Sr). To this end, in Chapter 1, I characterize the statewide geographic variation on multiple spatial scales in ⁸⁷Sr/⁸⁶Sr ratios of Alaska's rivers and discuss the geochemical and geological controls of observed ⁸⁷Sr/⁸⁶Sr ratios. In Chapter 2, I approach the persistent problem of evaluating site-specific temporal variation, especially in remote Subarctic and Arctic regions, by employing the non-migratory behavioral ecology of slimy sculpin (Cottus cognatus). Finally, in Chapter 3, I demonstrate how the development of temporally and spatially robust ⁸⁷Sr/⁸⁶Sr baseline datasets within the Nushagak River was able to apportion a mixed stock fishery harvest of Chinook salmon conducted in Nushagak Bay back to natal sources at the sub-basin watershed level. Because of the conservative nature of the ⁸⁷Sr/⁸⁶Sr ratio during physical and biological processes, the development of this method is applicable not only to Chinook salmon, but also to other salmon species (e.g., sockeye and coho salmon, O. kisutch). Additionally, the development of baseline ⁸⁷Sr/⁸⁶Sr information (e.g., waters) and an overall research framework to employ this tracer in provenance studies, have statewide implications for the research and management of other migratory animals.
    • Validation and application of infrared thermography for the assessment of body condition in pinnipeds

      Nienaber, Jeanette (2009-08)
      Infrared thermography (IRT) was used to collect baseline information on skin surface temperatures of two species of pinnipeds, the harbor seal (Phoca vitulina; n = 6) and the Steller sea lion (Eumetopias jubatus; n = 2). The IRT technique was validated against objects of known temperature and through post-collection software manipulation of environmental parameters that influence IRT output (emissivity, distance, relative humidity, ambient temperature and reflected temperature). From February 2007 to February 2008, biweekly measurements were taken of skin surface temperature (FLIR P25 infrared camera) with subsequent measurements of blubber depth (SonoSite Vet 180 portable imaging ultrasound system) on captive individuals at the Alaska SeaLife Center, Seward, Alaska. Once validated, skin surface temperatures in 10 defined regions (whole body, torso, head, eye, muzzle, shoulder, axillae, hip, fore and hind flipper) were used to determine seasonal variability as well as consistent hot or cold spots, and of those spots, which may act as thermal windows (defined areas of active heat loss and/or retention). Concurrent measurements of blubber depth were compared to skin surface temperatures at eight body sites to assess: a) the impact of insulation level on skin surface temperature on a site-specific scale, and b) the potential use of IRT as an alternative method for the non-invasive measurement of body condition. Both species varied seasonally in skin surface temperature from winter to reproductive and molt to winter, however, harbor seals had greater regional variation. Similar hot and cold spots were consistently recognized in both species with shoulder, axillae, fore and hind flipper identified as likely thermal windows. While some site-specific significant relationships were found between skin surface temperature and blubber thickness, insulation level alone explained a very small portion of the variance. Future studies to determine the factors influencing the variance on skin surface temperature (i.e., blood flow to the skin) warrant further exploration.
    • Variability in foraging by humpback whales (Megaptera novaenangliae) on the Kodiak, AK, feeding ground

      Wright, Dana Louise; Witteveen, Briana; Quinn, Terrance II; Wynne, Kate; Horstmann-Dehn, Lara (2014-12)
      The North Pacific humpback whale (Megaptera novaeangliae) population has been growing rapidly following a moratorium on commercial whaling in 1986. Knowledge of humpback whale foraging on feeding grounds is becoming increasingly important as the growing population consumes more prey, including economically important commercial fishes. The goal of this thesis is to better understand how marine resources are shared among the growing humpback whale population and sympatric apex predators, including western Steller sea lions (SSLs; Eumetopias jubatus), on the Kodiak, AK, feeding ground. To address this, we explored spatial and temporal (inter-annual and within-feeding season) variability in summer foraging by humpback whales along the eastern side of the Kodiak Archipelago as described by stable carbon (δ¹³C) and nitrogen (δ¹⁵N) isotope ratios of humpback whale skin (n = 118; 2004-2013). We found evidence for the existence of two sub-aggregations of humpback whales ('North', 'South') on the feeding ground that fed at different trophic levels (TLs) throughout the study period. Bayesian stable isotopic mixing models were applied to describe the proportional contribution of prey species to the diet of humpback whales for the two regions. The 'North' region humpback whale sub-aggregation consumed a mixed diet of euphausiids and forage fishes, whereas the 'South' region sub-aggregation foraged predominantly on euphausiids. Results from these analyses were compared to diet composition of Kodiak SSLs of the recovering western SSL population estimated from fecal samples (n = 656; 2000-2005), to explore spatial differences in the degree of overlap in trophic niche between these predators. Western SSLs underwent a marked population decline starting in the late 1970's and have shown slow and variable signs of recovery. Regional variability in SSL and humpback whale diets resulted in a higher degree of overlap in trophic niche, although not biologically significant (Ojk < 0.60), for individuals in the 'North' region compared with the 'South'. However, humpback whale consumption appears to overlap considerably with multiple piscivorous fishes that are prominent prey for SSLs, and thus, consumption by humpback whales may indirectly impact the prey resources of SSLs. Therefore, this study highlights the complexity of the Kodiak ecosystem and suggests consumption by an increasing population of humpback whales has the potential to indirectly impact the recovery of SSLs on a regional scale depending on the biomass of prey species and diet composition of humpback whales in the region.
    • Variability In Population Trends, Life History Characteristics, Amd Milk Composition Of Northern Fur Seals In Alaska

      Hayden, Alison Banks; Springer, Alan; Iverson, Sara; Castellini, Michael (2012)
      The northern fur seal population on the Pribilof Islands has been declining since the 1960s and is now less than 30% of its former size. Chapter 1 examines factors that might cause a population to decrease to such an extent and concludes that only nutritional limitation caused by climate change or commercial fisheries, predation by killer whales, or a combination of factors that includes conditions in the North Pacific during the winter were possible explanations. Chapter 2 reports the seasonal patterns in proximate composition of fur seal milk between St. Paul Island (one of the Pribilof Islands) and Bogoslof Island (an increasing population) to understand the energy requirements of lactation and the energetics of pup growth and body condition at weaning. Factors that caused variability in milk composition included days postpartum, time ashore, individual phenotype, island and preceding trip duration. Average milk lipid increased from 45.5+/-0.7% to 53.8+/-1.0% at St. Paul and from 45.8+/-0.7% to 57.3+/-0.8% at Bogoslof between July and October, while average milk protein remained relatively stable ranging between 10.0% and 10.5%. The lipid content of northern fur seal milk near peak lactation is the highest reported among otariid seals and among the highest known for all mammals.
    • Variability In The Circulation, Temperature, And Salinity Fields Of The Eastern Bering Sea Shelf In Response To Atomospheric Forcing

      Danielson, Seth Lombard; Weingartner, Thomas; Aagaard, Knut; Coyle, Kenneth; Hedstrom, Katherine; Kowalik, Zygmunt (2012)
      Although the Bering Sea shelf plays a critical role in mediating the global climate and supports one of the world's largest fisheries, fundamental questions remain about the role of advection on its salt, fresh water, heat and nutrient budgets. I quantify seasonal and inter-annual variability in the temperature, salinity and circulation fields. Shipboard survey temperature and salinity data from summer's end reveal that advection affects the inter-annual variability of fresh water and heat content: heat content anomalies are set by along-shelf summer Ekman transport anomalies whereas fresh water content anomalies are determined by wind direction anomalies averaged over the previous fall, winter and early spring. The latter is consistent with an inverse relationship between coastal and mid-shelf salinity anomalies and late summer -- winter cross-shelf motion of satellite-tracked drifters. These advection anomalies result from the position and strength of the Aleutian Low pressure system. Mooring data applied to the vertically integrated equations of motion show that the momentum balance is primarily geostrophic within at least one external deformation radius of the coast. Local accelerations, wind stress and bottom friction account for < 20% (up to 40%) of the along- (cross-) isobath momentum balance, depending on location and season. Wind-forced surface Ekman divergence is primarily responsible for flow variations. The shelf changes abruptly from strong coastal convergence conditions to strong coastal divergence conditions for winds directed to the south and for winds directed to the west, respectively, and substantial portions of the shelf's currents reorganize between these two modes of wind forcing. Based on the above observations and supporting numerical model integrations, I propose a simple framework for considering the shelf-wide circulation response to variations in wind forcing. Under southeasterly winds, northward transport increases and onshore cross-isobath transport is relatively large. Under northwesterly winds, onshore transport decreases or reverses and nutrient-rich waters flow toward the central shelf from the north and northwest, replacing dilute coastal waters that are carried south and west. These results have implications for the advection of heat, salt, fresh water, nutrients, plankton, eggs and larvae across the entire shelf.
    • Wasting disease and environmental variables drive sea star assemblages in the northern Gulf of Alaska

      Mitchell, Timothy James; Konar, Brenda; Iken, Katrin; Kelley, Amanda (2019-05)
      Sea stars are ecologically important in rocky intertidal habitats. The recent (starting 2013) sea star die-off attributed to sea star wasting disease throughout the eastern Pacific, presumably triggered by unusually warm waters in recent years, has caused an increased interest in spatial and temporal patterns of sea star assemblages and the environmental drivers that structure these assemblages. This study assessed the role of seven potential static environmental variables (distance to freshwater, tidewater glacial presence, wave exposure, fetch, beach slope, substrate composition, and tidal range) influencing northern Gulf of Alaska sea star assemblages before and after regional sea star declines. For this, intertidal surveys were conducted annually from 2005 to 2018 at five sites in each of four regions that were between 100 and 420 km apart. In the years leading up to the regional mortality events, assemblages were different among regions and were structured mainly by tidewater glacier presence, wave fetch, and tidal range. The assemblages after wasting disease were different from those before the event, and there was a partial change in the environmental variables that correlated with sea star structure. In these recent years, the environmental variables most highly correlated with sea star assemblages were slope, wave fetch, and tidal range, all of which relate to desiccation, attachment, and wave action. This indicates that the change in sea star density and structure by wasting disease left an assemblage that is responding to different environmental variables. Understanding the delicate interplay of some of the environmental variables that influence sea star assemblages could expand knowledge of the habitat preferences and tolerance ranges of important and relatively unstudied species within the northern Gulf of Alaska.
    • Zooplankton abundance, community structure, and oceanography northeast of Kodiak Island, Alaska

      Wang, Xian (2007-08)
      Zooplankton community dynamics and correlations with physical characteristics of the water were studied in the northwestern Gulf of Alaska. Zooplankton were collected systematically northeast of Kodiak Island, Alaska in March, May, August and November of 2002 to 2004. Species composition, total abundance and spatial community structure were correlated to physical variables. Small copepods (numerically>50%) dominated the zooplankton composition and were most abundant in August. Average biomass was 48.7 g WW m⁻² in May and 52.0 g WW m⁻² in August in Kodiak region. Interannual zooplankton abundance variations were large, with May 2003 having a dramatically higher abundance (2x10⁴ individual m⁻³ higher) than 2002 and 2004, probably due to the higher temperature (1° C higher) and lower salinity in May 2003. Small to moderate correlations (r<0.7) were found between temporal zooplankton abundance and selected physical variables. Spatial patterns in zooplankton composition among stations were more discernable in May than in August, likely due to water column stability in the spring and more dynamic influences in the summer, but revealed no consistent spatial patterns. The zooplankton community patterns in this region thus appear to arise due to complex oceanographic and bathymetric interactions, and suggest high variability can occur in the availability of prey for higher trophic levels.
    • Zooplankton ecology of Norton Sound, Alaska

      Neimark, Lee Michael (1979-12)
      The zooplankton distribution in Norton Sound was monitored for the Outer Continental Shelf Environmental Assessment Program. Salinity, temperature, and predation were investigated as factors controlling species composition and community structure. Sampling was concentrated along the eastern coast of Norton Sound during July and August, 1976. The copepod Acartia clausi and the cladocerans Evadne sp. and Podon sp. were numerically dominant in the samples. These species are able to tolerate the widely ranging salinities and temperatures of the coastal waters. The A. clausi population abundance was correlated with water temperature, while cladoceran and larval mollusc populations were correlated with salinity. No differences in species composition were discerned between stations along the shallow coast; however, the seaward community contained a greater diversity of organisms supporting a larger planktonic carnivore biomass. Zooplankton was a numerically dominant item in the diets of many fish species, although the epibenthic mysid community was volumetrically most important.