Show simple item record

dc.contributor.authorMorris, Alex
dc.date.accessioned2014-10-25T00:29:37Z
dc.date.available2014-10-25T00:29:37Z
dc.date.issued2014-05
dc.identifier.urihttp://hdl.handle.net/11122/4535
dc.descriptionThesis (M.S.) University of Alaska Fairbanks, 2014
dc.description.abstractCharacterizing the structure of the ionosphere has practical applications for telecommunications and scientific applications for studies of the near-earth space environment. Among several methods for measuring parameters of the ionosphere is ionospheric sounding, a radar technique that determines the electron content of the ionosphere as a function of height. Various research, military, and commercial institutions operate hundreds of ground-based ionosondes throughout the globe, and new ionosondes continue to be deployed in increasingly remote and distant locations. This thesis presents the design of an ionospheric sounder that reduces the power, size, and cost compared to existing systems. Key improvements include the use of an open-source software-defined radio platform and channel-aware dynamic sounding scheduling.
dc.description.tableofcontentsChapter 1. Introduction -- 1.1. A brief historical background -- 1.2. The ionosphere -- 1.3. Instruments for studying the ionosphere -- 1.4. Thesis organization -- Chapter 2. Radio waves and the ionosphere -- 2.1. Dispersion relation of electromagnetic waves in the ionosphere -- 2.2. Power reflected from the ionosphere -- 2.3 Noise in the HF spectrum -- 2.4. Ionograms -- Chapter 3. Radar principles -- 3.1. Target detection -- 3.2. Range and doppler elocity -- 3.3. Range-doppler ambiguity -- 3.4. Resolution and precision --3.5. Multi-pulse integration -- 3.6. Pulse compression -- 3.7. Practical limits of performance -- Chapter 4. Survey of current systems -- 4.1. Coherent transmission/reception and digital systems -- 4.2. Phase-coded pulses -- 4.3. Coherent integration of multiple pulses -- 4.4. Phased antenna arrays -- 4.5. O- and X-mode discrimination -- Chapter 5. System description -- 5.1. Design approach -- 5.2. Overview of the Ettus Research USRP -- 5.3. Using the USRP as a radar -- 5.4. Waveform Generation -- 5.5. Processing the received signal -- 5.6. Scheduling -- 5.7. Completing the system -- Chapter 6. Sounding results -- 6.1. Single frequency soundings -- 6.2. Swept frequency soundings -- Chapter 7. Conclusion -- 7.1. Evaluation of performance -- 7.2. Costs -- 7.3. Future improvements -- 7.4. Deploying a terrestrial ionosonde -- 7.5. Deploying a space-borne ionosonde -- References.
dc.titleDesign of a flexible and low-power ionospheric sounder
dc.typeThesis
dc.type.degreems
dc.identifier.departmentDepartment of Electrical and Computer Engineering
dc.contributor.chairBristow, William
dc.contributor.committeeHawkins, Joseph
dc.contributor.committeeSonwalkar, Vikas
refterms.dateFOA2020-03-05T09:29:45Z


Files in this item

Thumbnail
Name:
Morris_uaf_0006N_10142.pdf
Size:
1.985Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record