• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Atmospheric Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Atmospheric Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Using WRF/Chem, in-situ observations, and Calipso data to simulate smoke plume signatures on high-latitude pixels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Madden_uaf_0006N_10163.pdf
    Size:
    5.330Mb
    Format:
    PDF
    Download
    Author
    Madden, James Michael
    Chair
    Mölders, Nicole
    Committee
    Sassen, Kenneth
    Prakash, Anupma
    Grell, Georg
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4550
    Abstract
    The transport of wildfire aerosols provides concerns to people at or near downwind propagation. Concerns include the health effects of inhalation by inhabitants of surrounding communities and fire crews, the environmental effects of the wet and dry deposition of acids and particles, and the effects on the atmosphere through the scattering and absorption of solar radiation. Therefore, as the population density increases in Arctic and sub-Arctic areas, improving wildfire detection increasingly becomes necessary. Efforts to improve wildfire detection and forecasting would be helped if additional focus was directed toward the distortion of pixel geometry that occurs near the boundaries of a geostationary satellite's field of view. At higher latitudes, resolution becomes coarse due to the curvature of the Earth, and pixels toward the boundaries of the field of view become difficult to analyze. To assess whether it is possible to detect smoke plumes in pixels at the edge of a geostationary satellite's field of view, several analyses were performed. First, a realistic, fourdimensional dataset was created from Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) output. WRF/Chem output was statistically compared to ground observations through the use of skill scores. Output was also qualitatively compared to vertical backscatter and depolarization products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. After the quantitative and qualitative examinations deemed the model output to be realistic, synthetic pixels were constructed, appropriately sized, and used with the realistic dataset to examine the characteristic signatures of a wildfire plume. After establishing a threshold value, the synthetic pixels could distinguish between clean and smoke-polluted areas. Thus, specialized retrieval algorithms could be developed for smoke detection in strongly distorted pixels at the edge of a geostationary satellite's field of view.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2014
    Date
    2014-05
    Type
    Thesis
    Collections
    Atmospheric Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.