• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Intermittent hypercapnia induces long-lasting ventilatory plasticity to enhance CO₂ responsiveness to overcome dysfunction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Mosher_uaf_0006E_10170.pdf
    Size:
    2.276Mb
    Format:
    PDF
    Download
    Author
    Mosher, Bryan Patrick
    Chair
    Harris, Michael B.
    Committee
    Taylor, Barbara E.
    Hueffer, Karsten
    Edmonds, Brian W.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4556
    Abstract
    The ability of the brain to detect (central CO₂ chemosensitivity) and respond to (central CO₂ chemoresponsiveness) changes in tissue CO₂/pH, is a homeostatic process essential for mammalian life. Dysfunction of the serotonin (5-HT) mechanisms compromises ventilator CO₂ chemosensitivity/responsiveness and may enhance vulnerability to pathologies such as the Sudden Infant Death Syndrome (SIDS). The laboratory of Dr. Michael Harris has shown medullary raphe' contributions to central chemosensitivity involving both 5-HT- and y-aminobutyric acid (GABA)-mediated mechanisms. I tested the hypothesis that postnatal exposure to mild intermittent hypercapnia (IHc) induces respiratory plasticity, due in part to strengthening of bicuculline- and saclofen-sensitive mechanisms (GABAA and GABAB receptor antagonists respectively). Rats were exposed to IHc-pretreatment (8 cycles of 5 % CO₂) for 5 days beginning at postnatal day 12 (P12). I subsequently assessed CO₂ responsiveness using an in situ perfused brainstem preparation. Hypercapnic responses were determined with and without pharmacological manipulation. In addition, IHc-pretreatment effectiveness was tested for its ability to overcome dysfunction in the CO₂ responsiveness induced by a dietary tryptophan restriction. This dysfunctional CO₂ responsiveness has been suggested to arise from a chronic, partial 5-HT reduction imparted by the dietary restriction. Results show IHc-pretreatment induced plasticity sufficient for CO₂ responsiveness despite removal of otherwise critical ketanserin-sensitive mechanisms. CO₂ responsiveness following IHc-pretreatment was absent if ketanserin was combined with bicuculline and saclofen, indicating that the plasticity was dependent upon bicuculline- and saclofen-sensitive mechanisms. IHc-induced plasticity was also capable of overcoming the ventilatory defects associated with maternal dietary restriction. Duration of IHc-induced plasticity was also investigated and found to last far into life (up to P65). Furthermore, I performed experiments to investigate if IHc-induced plasticity was more robust at a specific developmental period. No such critical period was identified as IHc-pretreatment induced robust respiratory plasticity when administered at all developmental periods tested (P12-16, P21-25 and P36-40). I propose that IHc-induced plasticity may be able to reduce the severity of reflex dysfunctions underlying pathologies such as SIDS.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2014
    Date
    2014-05
    Type
    Dissertation
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.