• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Mathematics and Statistics
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Mathematics and Statistics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Tsunami runup in U and V shaped bays

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Garayshin_uaf_0006N_10038.pdf
    Size:
    1.258Mb
    Format:
    PDF
    Download
    Author
    Garayshin, Viacheslav Valer'evich
    Гарайшин, Вячеслав Валерьевич
    Chair
    Rybkin, Alexei
    Committee
    Rhodes, John
    Nicolsky, Dmitry
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4608
    Abstract
    Tsunami runup can be effectively modeled using the shallow water wave equations. In 1958 Carrier and Greenspan in their work "Water waves of finite amplitude on a sloping beach" used this system to model tsunami runup on a uniformly sloping plane beach. They linearized this problem using a hodograph type transformation and obtained the Klein-Gordon equation which could be explicitly solved by using the Fourier-Bessel transform. In 2011, Efim Pelinovsky and Ira Didenkulova in their work "Runup of Tsunami Waves in U-Shaped Bays" used a similar hodograph type transformation and linearized the tsunami problem for a sloping bay with parabolic cross-section. They solved the linear system by using the D'Alembert formula. This method was generalized to sloping bays with cross-sections parameterized by power functions. However, an explicit solution was obtained only for the case of a bay with a quadratic cross-section. In this paper we will show that the Klein-Gordon equation can be solved by a spectral method for any inclined bathymetry with power function for any positive power. The result can be used to estimate tsunami runup in such bays with minimal numerical computations. This fact is very important because in many cases our numerical model can be substituted for fullscale numerical models which are computationally expensive, and time consuming, and not feasible to investigate tsunami behavior in the Alaskan coastal zone, due to the low population density in this area
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2014.
    Table of Contents
    Introduction -- Chapter 1. Description of the problem -- Chapter 2. Linearization of the system of shallow water equations -- 2.1. Method of characteristics -- 2.2. Change of variables -- 2.3. Boundary conditions, initial conditions and domain of Φ, the linearized shallow water equation -- 2.4. The limits of applicability of the hodograph transformation -- Chapter 3. Solution of the linearized shallow water equation (the equation (2.19)) -- 3.1. Laplace transformation -- 3.2. Solving the transformed equation -- 3.3. Inverse Laplace transformation -- 3.4. Obtaining the formula for the solution of the linearized shallow water equation -- 3.5. The formula for Φ with a different order of integration -- Chapter 4. Verification of the solution of the linearized equation, obtained by the Laplace transform, for particular cases -- 4.1. Case 1. Plane beach case -- 4.1.1. Method 1. Solving by Laplace transform -- 4.1.2. Method 2. Solving by Fourier-Bessel transform after Carrier-Greenspan -- 4.2. Case 2. An inclined bay with the parabolic cross-section -- 4.2.1. Method 1. Solving by Laplace transform -- 4.2.2. Method 2. Solving by D'Alembert method after Didenkulova and Pelinovsky -- Chapter 5. Relation of the shallow water problem to the wave equation in Rn space -- 5.1. Solution of the wave equation and its spherical mean -- 5.2. Shallow water problems related to the waves in odd-dimensional spaces -- Chapter 6. Sloping bay with the cross-section parameterized by z = cIy ²/₃, c > 0 -- 6.1. Derivation of Φ (λ, σ), the solution of the linearized shallow water equation (6.1) with given initial and boundary conditions -- 6.2. Comparison of the obtained solution Φ for the bay described by z = cIy ²/₃ with the solution obtained through the Laplace transform -- 6.3. Physical characteristics of a wave in the bay and partial derivatives of Φ (λ,σ) -- Chapter 7. Practical experiments -- Conclusion -- References -- Appendix -- Chapter A. Modified Bessel functions and their asymptotic formulas -- A.1. Modified Bessel functions -- A.2. The asymptotic behavior of the modified Bessel functions.
    Date
    2013-08
    Type
    Thesis
    Collections
    Mathematics and Statistics

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.