• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Performance analysis of three nanofluids in liquid to gas and liquid to liquid heat exchangers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ray_uaf_0006N_10068.pdf
    Size:
    2.073Mb
    Format:
    PDF
    Download
    Author
    Ray, Dustin R.
    Chair
    Das, Debendra
    Committee
    Lin, Chuen-Sen
    Kim, Sun Woo
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4630
    Abstract
    One purpose of this research was to analyze the thermal and fluid dynamic performance of nanofluids in an automotive radiator (liquid to gas). Detailed computations were performed on an automotive radiator using three different nanofluids containing aluminum oxide, copper oxide and silicon dioxide nanoparticles dispersed in the base fluid, 60:40 ethylene glycol and water (EG/W) by mass. The computational scheme adopted was the effectiveness-Number of Transfer Unit (� -- NTU) method encoded in Matlab. The computational scheme was validated by comparing the predicted results with that of the base fluid reported by other researchers. Then, the scheme was adapted to compute the performance of nanofluids. Results show that a dilute 1% volumetric concentration of nanoparticles can have substantial savings in the pumping power or surface area of the heat exchanger, while transferring the same amount of heat as the base fluid. The second purpose of this research was to carry out experimental and theoretical studies for a plate heat exchanger (PHE). A benchmark test was performed with the minichannel PHE to validate the test apparatus with water. Next, using a 0.5% aluminum oxide nanoparticle concentration dispersed in EG/W preliminary correlations for the Nusselt number and the friction factor for nanofluid flow in a PHE were derived. Then, a theoretical study was conducted to compare the performance of three nanofluids comprised of aluminum oxide, copper oxide and silicon dioxide nanoparticles in EG/W. This theoretical analysis was conducted using the � -- NTU method. The operational parameters were set by the active thermal control system currently under design by NASA. The analysis showed that for a dilute particle volumetric concentration of 1%, all the nanofluids showed improvements in their performance over the base fluid by reducing the pumping power and surface area of the PHE.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2013
    Date
    2013-12
    Type
    Thesis
    Collections
    Engineering

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska is an affirmative action/equal opportunity employer, educational institution and provider and prohibits illegal discrimination against any individual.

    Learn more about UA’s notice of nondiscrimination.

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.