• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Geosciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Satellite to model comparisons of volcanic ash emissions in the North Pacific

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Steensen_uaf_0006E_10076.pdf
    Size:
    9.366Mb
    Format:
    PDF
    Download
    Author
    Steensen, Torge S.
    Chair
    Webley, Peter
    Committee
    Beget, James
    Dehn, Jonathan
    Stuefer, Martin
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4635
    Abstract
    To detect, analyze and predict the movement of volcanic ash in real time, dispersion models and satellite remote sensing data are important. A combination of both approaches is discussed here to enhance the techniques currently used to quantify volcanic ash emissions, based on case studies of the eruptions of the Kasatochi (Alaska, USA, 2008), Mount Redoubt (Alaska, USA, 2009) and Sarychev Peak (Russia, 2009) volcanoes. Results suggest a quantitative approach determining masses from satellite images can be problematic due to uncertainties in knowledge of input values, most importantly the ground surface temperature required in the mass retrieval. Furthermore, a volcanic ash transport and dispersion model simulation requires its own set of accurate input parameters to forecast an ash cloud's future location. Such input parameters are often difficult to assess, especially in real time volcano monitoring, and default values are often used for simplification. The objective of this dissertation is to find a quantitative comparison technique to apply to satellite and volcanic ash transport and dispersion models that reduces the inherent uncertainty in the results. The binary 'Ash -- No Ash' approach focusing on spatial extent rather than absolute masses is suggested, where the ash extent in satellite data is quantitatively compared to that in the dispersion model's domain. In this technique, neither satellite data nor dispersion model results are regarded as the truth. The Critical Success Index (CSI) as well as Model and Satellite Excess values (ME and SE, respectively) are introduced as comparison tools. This approach reduces uncertainties in the analysis of airborne volcanic ash and, due to the reduced list of input parameters and assumptions in satellite and model data, the results will be improved. This decreased complexity of the analysis, combined with a reduced error as the defined edge of ash cloud is compared in each method rather than defined threshold or mass loading, will have important implications for real time monitoring of volcanic ash emissions. It allows for simpler, more easily implemented operational monitoring of volcanic ash movements.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2013
    Table of Contents
    Chapter 1. Introduction -- Chapter 2. Qualitative comparison of Mount Redoubt 2009 volcanic clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data -- Chapter 3. Qualitative analysis of input parameters for satellite-based quantification of airborne volcanic ash -- Chapter 4. Quantitative comparison of volcanic ash observations in satellite-based remote sensing data and WRF-chem model simulations -- Chapter 5. Improvements on volcanic ash quantification in the Puff Volcanic Ash Tracking and Dispersion Satellite Thermal Infrared Remote Sensing Data -- Chapter 6. Conclusions.
    Date
    2013-12
    Type
    Dissertation
    Collections
    Geosciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.