• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Identifying bearded and ringed seal diet - a comparison of stomach contents, stable isotopes, fatty acids, and fecal dna

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bryan_uaf_0006N_10217.pdf
    Size:
    2.585Mb
    Format:
    PDF
    Download
    Author
    Bryan, Anna Laura
    Chair
    Hundertmark, Kris
    Horstmann-Dehn, Lara
    Committee
    Hardy, Sarah
    Quakenbush, Lori
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4651
    Abstract
    Stomach contents, stable isotopes, fatty acids, and more recently fecal DNA are commonly used to infer the diet of marine mammals. However, how complementary or contradictory these methods are, especially when considering individual diet variability, remains poorly understood. This study assessed the differences in the dietary information resulting from stomach contents, stable isotopes, and fatty acids for adult bearded seals (Erignathus barbatus), and fishes identified from stomach contents and fecal DNA for bearded and ringed seals (Pusa hispida), harvested in Alaska for subsistence use. Stomach contents and fecal DNA provided information on recently consumed prey. In contrast, stable carbon and nitrogen isotopes of muscle and fatty acid profiles of blubber provided information on prey consumed and integrated over a longer time frame, but taxonomic resolution of prey was low. Overall, stomach contents provided the most dietary data, while fecal DNA delivered the least. Using denaturing gradient gel electrophoresis (DGGE) of 16S gene fragments, only 40% of the fecal samples (12 bearded and one ringed seal) produced detectable DNA suitable for reference gene amplification. Only three fish species could be positively identified in the diet of seals (Arctic cod, Boreogadus saida; shorthorn sculpin, Myoxocephalus scorpius; and an unknown snailfish species, Liparidae) when using fecal DNA. In a dietary comparison, and despite differences in dietary time frames, the relative occurrence (RO) of prey from stomach contents and the mean proportions of prey source groups from a Bayesian stable isotope mixing model (SIAR) were similar. The proportions of indicator fatty acids from full-thickness blubber, such as 16:4n-1, 20:5n-3, 20:4n-6, 20:1n-9, 22:1n-11, and the presence of non-methylene-interrupted fatty acids were similar to other fatty acid studies of bearded seals in Alaska, and suggest a benthic diet. Overall, the methods yielded different, but not necessarily contradictory results.
    Description
    Thesis (M.S.) University of Alaska Fairbanks, 2014
    Table of Contents
    Chapter 1: General Introduction -- Chapter 2: Identifying bearded seal diet: a comparison of individual seals using stomach contents, stable isotopes, and fatty acids -- Chapter 3: Fish prey in bearded and ringed seal diet: a comparison of stomach contents and fecal DNA -- Chapter 4: General Conclusion.
    Date
    2014-08
    Type
    Thesis
    Collections
    Biological Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.