• Login
    View Item 
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    •   Home
    • University of Alaska Fairbanks
    • UAF Graduate School
    • Marine Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarworks@UACommunitiesPublication DateAuthorsTitlesSubjectsTypeThis CollectionPublication DateAuthorsTitlesSubjectsType

    My Account

    Login

    First Time Submitters, Register Here

    Register

    Statistics

    Display statistics

    Using strontium isotopes to track Pacific salmon migrations in Alaska

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brennan_uaf_0006E_10239.pdf
    Size:
    6.350Mb
    Format:
    PDF
    Download
    Thumbnail
    Name:
    CH3_Datasets_Supplemental_Mate ...
    Size:
    135Kb
    Format:
    Microsoft Excel
    Download
    Author
    Brennan, Sean Reiss
    Chair
    Wooller, Matthew
    Committee
    Fernandez, Diego
    Cerling, Thure
    Zimmerman, Christian
    McPhee, Megan
    Weingartner, Thomas
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11122/4696
    Abstract
    Pacific salmon (Oncorhynchus spp.) are an important cultural, ecological, and economic natural resource in Alaska. Not only do salmon maintain an important mechanism of nutrient transport between marine, aquatic, and terrestrial ecosystems, but they also provide a sustainable food and economic resource for human communities. A challenging issue in the management, conservation, and research of Pacific salmon is tracking their responses to perturbations across the multiple scales of population structure that characterize these species. Research has shown how the inherent biodiversity of Pacific salmon imparts resiliency to environmental change, and temporal stability to their overall productivity and the human systems dependent upon such productivity (e.g., fisheries). The vast biodiversity of salmon arises primarily via precise natal homing of adults to their rivers of origin, resulting in locally adapted populations. Thus, there have been considerable efforts to develop methods to effectively manage and monitor Pacific salmon biodiversity. One important example is using genetic differentiation among populations to discern the relative contributions of genetically distinct stocks in mixed stock fishery harvests. In the Bristol Bay region, sockeye salmon (O. nerka) harvests can be discerned at the watershed level (i.e., the nine major watersheds contributing to the fishery). However, tens to hundreds of locally adapted populations exist within each of these watersheds and methods to apportion fishery harvests to this finer scale population structure are lacking. This dissertation presents a new method in Alaska to discern fine-scale population structure (i.e., within watersheds) of Chinook salmon (O. tshawytscha) harvests using a naturally occurring geochemical tracer in rivers, strontium (Sr) isotopes (⁸⁷Sr/⁸⁶Sr). To this end, in Chapter 1, I characterize the statewide geographic variation on multiple spatial scales in ⁸⁷Sr/⁸⁶Sr ratios of Alaska's rivers and discuss the geochemical and geological controls of observed ⁸⁷Sr/⁸⁶Sr ratios. In Chapter 2, I approach the persistent problem of evaluating site-specific temporal variation, especially in remote Subarctic and Arctic regions, by employing the non-migratory behavioral ecology of slimy sculpin (Cottus cognatus). Finally, in Chapter 3, I demonstrate how the development of temporally and spatially robust ⁸⁷Sr/⁸⁶Sr baseline datasets within the Nushagak River was able to apportion a mixed stock fishery harvest of Chinook salmon conducted in Nushagak Bay back to natal sources at the sub-basin watershed level. Because of the conservative nature of the ⁸⁷Sr/⁸⁶Sr ratio during physical and biological processes, the development of this method is applicable not only to Chinook salmon, but also to other salmon species (e.g., sockeye and coho salmon, O. kisutch). Additionally, the development of baseline ⁸⁷Sr/⁸⁶Sr information (e.g., waters) and an overall research framework to employ this tracer in provenance studies, have statewide implications for the research and management of other migratory animals.
    Description
    Dissertation (Ph.D.) University of Alaska Fairbanks, 2014.
    Date
    2014-08
    Type
    Dissertation
    Collections
    Marine Sciences

    entitlement

     
    ABOUT US|HELP|BROWSE|ADVANCED SEARCH

    The University of Alaska Fairbanks is an affirmative action/equal opportunity employer and educational institution and is a part of the University of Alaska system.

    ©UAF 2013 - 2023 | Questions? ua-scholarworks@alaska.edu | Last modified: September 25, 2019

    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.